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Preface

This volume continues the tradition of the series Progress in Motor Control started
in the previous millennium with the publication of the first volume subtitled
“Bernstein’s Traditions in Movement Studies” (Latash 1998). That volume con-
tained chapters written by speakers at the first conference with the same name held
in 1996 in State College, Pennsylvania. Over the past 20 years, the field of motor
control has grown substantially, which is reflected in the creation of the journal
“Motor Control” and the International Society for Motor Control (ISMC). The
conferences Progress in Motor Control have become biennial meetings of ISMC,
and so far seven volumes have been published forming a kind of encyclopedic
compendium of motor control that is updated every other year.

Most of the chapters in this volume were written by speakers who attended the
conference Progress in Motor Control X in Budapest, held during July 22-25,
2015. In addition, we invited several additional groups of authors who have per-
formed new, exciting studies over the past two years. The subtitle of this volume,
Theories and Translations, reflects the two actively developed directions of
research. One of them tries to develop theoretical approaches to biological move-
ment that would make motor control a subfield of natural science, physics of living
systems. The other applies recent advances in motor control to areas such as
robotics, movement disorders, brain—computer interface, and rehabilitation.

The volume consists of six parts that are focused on specific aspects of motor
control. Part I, “Theoretical Motor Control”, opens with a chapter by Andrea
d’Avella entitled “Modularity for Motor Control and Motor Learning”. The author
addresses a central issue of how the central nervous system (CNS) overcomes the
complexity of multi-joint and multi-muscle control and suggests that modular
architecture may simplify control by embedding features of both the dynamic
behavior of the musculoskeletal system and of the task into a small number of
modules. Recent studies, in which human subjects used myoelectric control to
move a mass in a virtual environment, have suggested that recombination of
modules may be more efficient than learning or adapting a skill by acquiring new
modules. According to the view of Jeroen Smeets and Eli Brenner in their chapter
“Synergies_in_Grasping”, both_transport of the hand and formation of the grip
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emerge from a combination of independent movements of individual digits towards
the surface of the object. The chapter presents three experiments designed to test to
what extent movements of individual digits can be considered the building blocks
of the reach-to-grasp movement. The third chapter by Katja Kornysheva,
“Encoding Temporal Features of Skilled Movements—What, Whether and How?”
addresses the issue of storing memories of complex temporal dynamics of move-
ment in the brain. It outlines the constraints that determine whether and how the
timing of skilled movements is represented in the central nervous system and offers
a schematic model of how these different representations complement and interact
with each other in fast feedback loops to achieve precise motor timing. The chapter
by Dagmar Sternad and Christopher Hasson “Predictability and Robustness in the
Manipulation of Dynamically Complex Objects” explores the hypothesis that
humans learn strategies that make the interactions in neural representations of
object dynamics predictable and robust to inaccuracies. The chapter describes a
virtual reality task that simulates a cart-and-pendulum system and shows, that with
practice, subjects develop movement strategies that are predictable and robust. This
approach may be a promising platform to gain insights into a variety of neurological
diseases and healthy aging.

Part II of the book is dedicated to the equilibrium-point (EP) hypothesis. This
hypothesis was suggested in the mid-1960s by Anatol Feldman. Fifty years later,
the hypothesis remains hotly debated. It has not been rejected despite multiple
claims of disproving the EP hypothesis. Neither has it been accepted by most
researchers. Over the past few years, more and more experimental evidence has
accumulated in favor of the EP hypothesis, addressing such diverse aspects as the
neurophysiological mechanisms underlying the control of movements, relations
between the EP hypothesis and motor synergies, and applications of this hypothesis
to movement disorders. This part opens with a chapter by Mark Latash, which
presents a brief review of the EP hypothesis and its relation to the synergic control
of multi-effector systems. It suggests that the EP hypothesis represents an example
of a physical approach to human movements making it a subfield of the physics of
living systems. The chapter describes how the EP hypothesis can be naturally
combined with the idea of hierarchical control of movements and of synergic
organization of the abundant systems involved in all actions. The following chapter
by Anatol Feldman “The Relationship Between Postural and Movement Stability”
starts with summarizing approaches to the control of posture and movement from
the middle of the nineteenth century to our times. Further, the chapter describes the
basics of the control with referent coordinates and their neurophysiological
mechanisms. Then, the chapter addresses issues of stability of posture and move-
ment and the role of coactivation command with an emphasis on standing and
stepping. This part ends with a chapter by Mindy Levin “Principles of Motor
Recovery After Neurological Injury Based on a Motor Control Theory”. The
chapter describes how physiologically well-established principles in the control of
actions, such as those outlined in the EP hypothesis, can help advance the under-
standing of deficits that may limit recovery at two levels: Body structure and
function level and Activity level. In particular, the chapter addresses spasticity as a
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reflection of disordered control of the threshold of the tonic stretch reflex and offers
practical lessons for motor rehabilitation.

Part III of the book addresses neurophysiological mechanisms of motor control.
The chapter by Richard Carson and colleagues, “What Do TMS-Evoked Motor
Potentials Tell Us About Motor Learning?” reviews the role of transcranial mag-
netic stimulation (TMS) in studies regarding the effects of motor learning. The
authors emphasize the restricted explanatory scope of the TMS technique and
consider a specific example of cross education: the interlimb transfer of functional
capacity. Winfried Mayr and colleagues cover in their chapter, “Motor Control of
Human Spinal Cord Disconnected from the Brain and Under External Movement”,
the role of the spinal cord in motor control and coordination. They describe a model
of the human spinal cord with reduced and altered motor control and discuss how
knowledge about human motor control as well as neurophysiology teach us to
perform external modification of upper motor neurons by electrical stimulation and
external control of afferents to spinal cord. Anticipatory adjustments during object
manipulation are described in the chapter by Thomas Schneider and Joachim
Hermsdorfer entitled “Anticipation in Object Manipulation: Behavioral and Neural
Correlates”. The authors review studies using brain functional imaging and
examining the deficits of patients with localized brain damage to provide an insight
into the basic principles of anticipatory motor control and their underlying neural
substrates.

Part IV dedicated to problems of learning skilled behaviors opens with a chapter
“Brain Plasticity and the Concept of Metaplasticity in Skilled Musicians” by Eckart
Altenmiiller and Shinichi Furuya, which explores the importance of brain plastic
adaptations for enhanced sensory, motor, and cognitive functions. In particular, the
authors focus on plastic changes in neuroplastic functions, so called metaplasticity,
in musicians. The potential role of this mechanism for prevention of developing
maladaptive changes in the nervous system, possibly leading to focal dystonia in
musicians, is discussed. The next chapter, “The Coordination Dynamics of
Observational Learning: Relative Motion Direction and Relative Phase as
Informational Content Linking Action-Perception to Action-Production” by John
Buchanan, emphasizes identifiable movement features that constrain and inform
action-perception and action-production processes. The author puts forth relative
phase as an informational variable that links perception to action. Across a series of
tasks, it is shown that the relative motion and relative phase between limbs and
joints are picked up through visual processes and support the observational learning
of motor skills. Elizabeth Torres reviews new technological advances and new
analytical methods in the study of movements and their changes in the clinical
setting in a chapter titled “Rethinking the Study of Volition for Clinical Use”. She
emphasizes the importance of variability in the emergence of movement patterns
and presents examples of solutions amenable to the habilitation and rehabilitation of
volition in patient populations.

Part V of the book covers the field of impaired motor control and rehabilitation.
Sainburg and colleagues in their chapter titled “Motor Lateralization Provides a
Foundation for Predicting and Treating Non-paretic Arm Motor Deficits in Stroke”
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address clinical implications of the dynamic dominance hypothesis. This bilateral
hemispheric model of motor control has successfully predicted hemisphere-specific
motor control and motor learning deficits in the ipsilesional, or non-paretic, arm of
patients with unilateral stroke. The chapter reviews a series of studies about the
effects of intense practice of virtual reality and real-life tasks that lead to improved
control of the ipsilesional arm in functional tasks. The chapter by Jozsef Laczko,
Mariann Mravcsik, and Peter Katona “Control of Cycling Limb Movements:
Aspects for Rehabilitation” addresses two aspects in the research on kinematics and
muscle activation during cycling lower and upper limb movements. One of them
deals with the effects of external load and resistance on the variance of movement
patterns at different levels, from muscles to joint configurations and to limb end-
points. The comparison of the variance indices in the dominant and nondominant
arms drives attention to a special feature of arm cycling that is common for both
arms. The second aspect is related to functional electrical stimulation as a means to
drive cycling movements in individuals with a spinal cord injury. The advantages of
applying and controlling these types of movements in rehabilitation of people with
paralyzed limbs are discussed. The chapter by Andrew Gordon entitled “Impaired
Voluntary Movement Control and Its Rehabilitation in Cerebral Palsy” reviews the
pathophysiology and mechanisms underlying impaired upper extremity control in
cerebral palsy. Further, the author shows that the developing corticospinal tract can
reorganize its connectivity depending on the timing and location of the CNS injury,
with implications for the severity of hand impairment and rehabilitation. The
chapter ends by describing evidence for motor learning-based therapies and out-
lining the future directions for rehabilitation. The chapter by John Rothwell
addresses the effects of transcranial magnetic stimulation (TMS) on motor behavior,
motor learning and on outcomes of presently applied rehabilitation therapies. It
analyzes the question of whether non-invasive brain stimulation can enhance motor
recovery after stroke. At the end of the chapter, new approaches are discussed that
may lead to reliable and effective therapeutic treatments in medical rehabilitation.

Part VI of the book summarizes the recent progress in the field of the human—
machine interface. Rajiv Ranganathan and Robert Scheidt address the learning of
skilled behaviors in their chapter “Organizing and Reorganizing Coordination
Patterns”. They discuss how a new coordination pattern is acquired and refined
when one learns a novel motor task. To examine this issue, the authors describe a
body—machine interface paradigm. Then, the lessons of this paradigm for motor
learning are outlined, especially for learning of motor patterns in high-dimensional
spaces.

Davide Piovesan addresses the use of robot-assisted rehabilitation in the chapter
titled “A Computational Index to Describe Slacking During Robot-Therapy”.
Robot-assisted arm movements were examined in stroke survivors; with training,
the patient became able to execute voluntary movements with lower force levels
and followed a minimum effort trajectory. This study offers new important insights
into the rehabilitation of stroke survivors.

Tucker Tomlinsom and Lee Miller address the remarkable ability of paralyzed
patients_to_control movement of a_prosthetic limb or even their own hand with
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cortical signals in their chapter “Toward a Proprioceptive Neural Interface That
Mimics Natural Cortical Activity”. They emphasize the importance of
somatosensation, including proprioception, for the natural control of movement and
review studies focused on refining these sensations by stimulating the somatosen-
sory cortex (S1) directly. Further, they describe the recent efforts to develop afferent
neural interfaces through spatiotemporally precise intracortical microstimulation.

This volume is written for well-versed readers of the field. It presents a wealth of
up-to-date material on various issues in the field of motor control and is designed as
a reference book. It can also be used as an additional reading for graduate-level
courses in such fields as physiology, psychology, kinesiology, engineering, phys-
ical therapy, and movement disorders.

We would like to thank the organizers and participants of the “Progress in Motor
Control X” conference as well as the authors of the chapters in this book. We are
also grateful to the Faculty of Science of the University of Pecs, the Hungarian
Society of Sport Science and the Wigner Research Centre for Physics in Hungary
for their help in organizing the meeting, which formed the foundation of this book.

Pécs, Hungary Jozsef Laczko
University Park, PA, USA Mark L. Latash
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Part I
Theoretical Motor Control




Modularity for Motor Control and Motor
Learning

Andrea d’Avella

Abstract How the central nervous system (CNS) overcomes the complexity of
multi-joint and multi-muscle control and how it acquires or adapts motor skills are
fundamental and open questions in neuroscience. A modular architecture may
simplify control by embedding features of both the dynamic behavior of the
musculoskeletal system and of the task into a small number of modules and by
directly mapping task goals into module combination parameters. Several studies of
the electromyographic (EMG) activity recorded from many muscles during the
performance of different tasks have shown that motor commands are generated by
the combination of a small number of muscle synergies, coordinated recruitment of
groups of muscles with specific amplitude balances or activation waveforms, thus
supporting a modular organization of motor control. Modularity may also help
understanding motor learning. In a modular architecture, acquisition of a new motor
skill or adaptation of an existing skill after a perturbation may occur at the level of
modules or at the level of module combinations. As learning or adapting an existing
skill through recombination of modules is likely faster than learning or adapting a
skill by acquiring new modules, compatibility with the modules predicts learning
difficulty. A recent study in which human subjects used myoelectric control to
move a mass in a virtual environment has tested this prediction. By altering the
mapping between recorded muscle activity and simulated force applied on the mass,
as in a complex surgical rearrangement of the tendons, it has been possible to show
that it is easier to adapt to a perturbation that is compatible with the muscle syn-
ergies used to generate hand force than to a similar but incompatible perturbation.
This result provides direct support for a modular organization of motor control and
motor learning.

A. d’Avella ()

Department of Biomedical and Dental Sciences and Morphofunctional Imaging,
University of Messina, Messina, Italy

e-mail: andrea.davella@unime.it

A. d’Avella
Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
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Keywords Electromyography (EMG) - Muscle synergies - Coordinated
recruitment - Joint angles trajectory - Inverse kinematics - Inverse dynamcis -
Degrees-of-freedom (DOF) - Iterative algorithm

Introduction

Any goal-directed limb movement, even one that appears simple and effortless such
as reaching for a cup on a table, requires complex control processes. Mechanically,
limbs are open kinematic chains with multiple segments and their dynamic behavior
is complex due to the interactions between the different segments (Hollerbach and
Flash 1982). A single segment rotates around a joint with an angular acceleration
proportional to the applied torque. However, the angular accelerations of two or
more segments in a chain depend on torques, angular velocities, and angular dis-
placements at all joints. Moreover, muscles are redundant, i.e., there are more
muscles in a limb than joints, and they generate force with complex dependences on
neural activation, muscle length, and shortening velocity. How the CNS transforms
sensory information about a goal into coordinated activations of many muscles
necessary to achieve the goal is a fundamental and open question in neuroscience.

In robotics, the torques necessary to generate a desired limb movement can be
computed from the equations of motion for the limb. However, the complexity of
the equations of motion increases dramatically with the number of joints. As it is
unlikely that the CNS explicitly represents the equation of motion and performs
analytical computations, the CNS may instead rely on an implicit and possibly
approximate knowledge of the dynamic behavior of the limb in response to muscle
activation. A long-standing hypothesis in motor control is that motor commands are
generated by a modular control architecture (Sherrington 1948; Bernstein 1967).
Thus, motor modules may store approximate yet sufficient knowledge to construct
adequate motor commands.

In the following sections, I will first address why and how modularity may
simplify motor control. I will then review experiments showing that, in many tasks
and conditions, motor commands are generated by the combination of a small
number of muscle synergies, coordinated recruitment of group of muscles with
specific amplitude balances or activation waveforms, suggesting that the CNS
organizes muscle synergies as motor control modules. Finally, I will discuss how
modularity may also help understanding motor learning. In a modular control
architecture, new motor skills may be acquired by learning new combinations of
existing modules or by learning new modules. As learning new modules is likely a
slower adaptive process than learning new combinations of existing modules,
modularity predicts learning difficulty. A recent study in which human subjects
used myoelectric control to move a mass in a virtual environment has shown that
the difficulty in adapting to a perturbation depends on the compatibility of the
perturbation with the muscle synergies used to generate hand force. This study
provides_direct_evidence for_muscle_synergies as motor control modules and
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suggests that motor learning relies on two adaptive processes: a fast learning of
muscle synergy combinations and a slow learning of muscle synergy structure.

Modularity to Simplify Motor Control

The processes underlying the control of a goal-directed limb movement can be
described as sensorimotor transformations, i.e., transformations of sensory infor-
mation about the goal and the state of the limb into motor commands. Reaching for
a cup on a table, for example, requires mapping visual information about the
position of the cup with respect to the body as well as visual and proprioceptive
information about the initial posture of the arm into muscle activations. The acti-
vation profiles of all the muscles acting on the arm have to be accurately orches-
trated in order to ensure that muscular tensions result in appropriate joint torques.
Such torques must accelerate and decelerate the joint angles along a trajectory in
joint space corresponding to a hand trajectory that brings the hand from its initial
position to the target. In robot control, similar sensorimotor transformations must be
implemented to generate the commands to the actuators of a robotic arm. Such
transformations may be performed sequentially, starting from planning a trajectory
that will bring the end effector to the target, then transforming the end-effector
trajectory into a joint angles trajectory (inverse kinematics), then computing the
torques necessary to generate the joint angles trajectory (inverse dynamics), finally
determining the commands to the actuators needed to generate the desired torques.
Inverse dynamics can be computed directly if the equations of motion are known.
However, for a limb with many degrees-of-freedom (DOF), i.e., variables required
for describing the rotations around each joint, the equations of motion are complex
because they have a large number of terms that depend on the interactions between
different DOF. Even when the equations of motions can be derived analytically,
accurate estimation of all the geometrical and inertial parameters involved may be
challenging and inverse dynamics may provide torques only approximating those
required to generate a desired trajectory. Robots may, however, compensate for
inaccuracies in the planned torques, as well as for noise in the actuators, using
feedback control. Because of substantial delays in transmission and processing of
sensory information, the CNS cannot rely on feedback control as much as robots,
especially when performing fast movements. In many cases, the CNS has to per-
form accurate sensorimotor transformations and, in particular, it has to predict the
torques needed for a given goal-directed movement accurately. How does the CNS
implement accurate sensorimotor transformations?

As it is unlikely that the CNS explicitly represents the equation of motion and
performs analytical computations, implicit knowledge of the dynamic behavior of
the limb, sufficient to implement task-specific sensorimotor transformations, may be
stored in a set of motor modules used to construct motor commands. Explicit
knowledge such as that captured by the equation of motion can be exploited to
compute the torques necessary.to.achieve any goal in any task, i.e., it represents the
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most general knowledge of the dynamic behavior of the limb. However, such high
degree of generality has a high cost in terms of acquisition. How would the CNS
acquire and represent complex functions of many variables? As a large recurrent
neural network may represent complex functions, the CNS might be able to learn
the most general sensorimotor transformations through practice. However, given
the large number of variables and the functional complexity involved, learning
sensorimotor transformations by trial-and-error might require an enormous number
of trials, which seems at odds with the existence of both sophisticated innate motor
behaviors and fast motor skill learning. At the opposite extreme in terms of gen-
eralization capabilities, a one-to-one mapping of a goal and an initial limb state into
a specific motor command, i.e., a specific set of muscle activation profiles, would be
easy to acquire and to represent. A specific motor program can be learned and used
to reach a target at a given position from a given initial arm configuration, However,
a different motor program would have to be stored and retrieved for each goal. As
goals in most tasks vary continuously, e.g., the position in space of the target to
reach, a mapping for each one of possibly infinity many goals would potentially
require infinite storage. The solution for implementing adequate sensorimotor
transformations that evolution may have endowed the CNS with or that the CNS
may discover through practice and learning (Giszter et al. 2010) is likely a com-
promise between a hard to learn but very general mapping and a very extensive set
of easy to learn one-to-one mappings. Motor modules may represent such a com-
promise. A long-standing hypothesis in motor control is that motor commands are
generated by a modular control architecture. While different types of modules have
been proposed, ranging from spinal reflexes (Sherrington 1948) to unit burst gen-
erators (Grillner 1981), from spinal force fields (Bizzi et al. 1991) to muscle syn-
ergies (Tresch et al. 1999; d’Avella et al. 2003; Ivanenko et al. 2004) and kinematic
synergies (Santello et al. 1998), motor modules may be characterized by their
ability to implement sensorimotor transformations with a small number of param-
eters. They may allow storing limited yet sufficient knowledge of the dynamic
behavior of the limb to construct adequate motor commands by mapping goals into
a small number of module combination parameters, thus simplifying control.

Considering again a reaching task, as the target position changes the muscle
patterns required to reach the target will also change. However, the muscle patterns
for reaching two targets close to each other will only have small differences and
most of their structure will be shared. Differences will increase with distance but
there will still be structure shared among muscle patterns for all targets. Thus, rather
than computing each muscle pattern on the fly or storing it as a separate mapping,
shared structure may be exploited to generate the muscle patterns for each possible
goal of a task as the combination of a small number of task-specific motor modules.
Once an appropriate set of motor modules are stored, the sensorimotor transfor-
mations will simply map goals into a small number of parameters that determine the
contribution of each module for the generation of the appropriate muscle pattern.
Thus, motor modules reduce the dimensionality of the output of the sensorimotor
transformations.
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How a modular control architecture may reduce the dimensionality of the control
problem has been investigated with a simulation in which a planar kinematic chain
actuated by torque profiles was used as a model of an arm performing a reaching
task (Alessandro et al. 2013). Despite the nonlinearity of the equations of motion,
the torque profiles bringing the arm endpoint from a given starting position to any
target can be generated by a linear combination of a small set of basic actuation
profiles, i.e., motor modules. Instead of planning a desired trajectory and using
inverse dynamics to compute torque profiles, motor modules allow mapping
directly a target into motor commands by selecting a few combination coefficients.
In the simulation, interpolation of the kinematic trajectories generated by the
dynamic responses to each basic activation profile was used to determine the
combination coefficients but a neural network can easily learn a low-dimensional
mapping between target positions and combination coefficients by trial-and-error.
Importantly, the number and choice of motor modules affects performance. Good
task performance can be achieved with a small number of modules if the modules
are selected as torque profiles that achieve the task in a rich enough set of proto-
typical conditions, i.e., if they embed features of the system dynamics and of the
task.

Evidence for Modularity from EMG Decomposition
into Muscle Synergies

What is the evidence that the CNS actually employs motor modules to simplify
control? In the last two decades, an increasing number of studies have investigated
whether muscle synergies, coordinated recruitment of groups of muscles with
specific amplitude balances or activation waveforms, are motor modules organized
by the CNS. Muscle synergies may store structure in the muscle activity patterns
shared across tasks and task conditions. Thus, if muscle synergies are motor
modules, one expects a small number of synergies to be able to reconstruct the
muscle patterns observed across a variety of conditions. Indeed, studies based on
the decomposition of the EMG activity recorded from multiple muscles in different
species during the performance of a variety of motor tasks have shown that muscle
patterns can be reconstructed by the combination of a small number of muscle
synergies, thus supporting a modular organization of motor control. In this section,
I will first present the different quantitative definition of muscle synergies that have
been introduced in the last two decades and I will then briefly review some of the
studies that have used EMG decomposition approaches to identify muscle syn-
ergies, focusing in particular on reaching movements and locomotion. A number of
review articles can be consulted for more details on recent studies on muscle
synergies (Bizzi et al. 2008; Tresch and Jarc 2009; Lacquaniti et al. 2012; d’Avella
and Lacquaniti 2013; Giszter 2015; Ting et al. 2015).
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The idea that muscles are activated together, either as a desirable strategy to
simplify control or because of pathological loss of control due to neural damage,
has a long history and the term “muscle synergy” has been used in different con-
texts with different meanings. In the context of motor control, muscle synergies
have been defined as coordinated activations of groups of muscles allowing the
CNS to control movements through a smaller number of variables than those
required to control individual muscles (Bernstein 1967) or as a neural organization
that provides stability of an important performance variable by covaried adjust-
ments of elemental variables such as coordinated muscle activations (Latash 2012).
The existence of a muscle synergy as the activation of a group of muscles with a
fixed activation balance was first investigated by analyzing the activations of pairs
of muscles (Lee 1984; Macpherson 1991). Muscles recruited synergistically were
expected to have correlated activations. These investigations failed to fully support
the existence of muscle synergies, as pairwise correlations were often observed but
not as frequently as expected (Buchanan et al. 1986; Soechting and Lacquaniti
1989; Maier and Hepp-Reymond 1995). However, strong pairwise correlations
provide a clear signature of a muscle synergy defined as a fixed balance of muscle
activation, i.e., capturing spatial (across muscles) structure, only when a synergy is
recruited by itself. If the same muscles belong to more than one synergy, each with
a different fixed activation balance, and different synergies are combined flexibly
across task conditions, pairwise correlations may be weak (Bizzi et al. 2002). Thus,
the prediction of a model that allows for flexible combinations of fixed spatial
muscle synergies is the existence of a low-dimensional covariance structure among
all muscles rather than high pairwise correlations. To test quantitatively such pre-
diction, a model based on the linear combination of spatial muscle synergies was
introduced and a method to identify synergies from the EMG signals recorded from
many muscles was developed (Tresch et al. 1999). Thus, spatial muscle synergies
(also known as time-invariant or synchronous synergies) have been defined as basis
vectors in muscle activation space:

N
m(r) =y ci(r) wi, (1)
i=1
where m(?) is a vector of activations in a set of muscles sampled at time #, w; is a
(time-invariant) vector representing a fixed balance of activation within the muscles
in the i-th spatial synergy, and c,(¢) is a time-varying combination coefficient scaling
in amplitude the i-th synergy and allowing to flexibly combine N fixed synergies.
As muscle activation is a nonnegative variable, the elements of the synergy vectors
and the combination coefficients are constrained to be nonnegative. The extraction
of such synergy vectors from muscle patterns recorded in many different conditions
essentially entails identifying the subspace of the muscle activation space, i.e., the
abstract vector space in which each axis represent the level of activation of one
muscle that contains most of the variation of the muscle patterns. Such subspace
could be readily identified by principal component analysis, which consists in the
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diagonalization of the data covariance matrix, but the basis vectors extracted with
this procedure do not satisfy the nonnegativity constraint and they are instead
constrained to be mutually orthogonal. An iterative optimization algorithm based on
gradient descent of the reconstruction error was then developed for muscle synergy
identification (Tresch et al. 1999). At the same time, a more efficient iterative
algorithm for nonnegative matrix factorization (NMF) was developed for image and
language decomposition (Lee and Seung 1999) and later became the standard
approach for EMG decomposition.

In addition to being defined in the spatial domain, i.e., as groups of muscles with
specific activation balances, muscle synergies have also been defined in the tem-
poral domain, as specific activation waveforms shared across groups of muscles.
Temporal muscle synergies (also known as temporal components or basic activa-
tion patterns) are defined by the same equation (Eq. 1) used to define spatial muscle
synergies but the time-varying coefficients [c;(f)] rather than by the muscle synergy
vectors or weights (w;) are taken as the modular elements. Thus, the two models can
only be distinguished when considering muscle patterns for multiple task condi-
tions. In the case of spatial synergies, one set of synergy vectors is combined by
different time-varying coefficients in different conditions while for temporal syn-
ergies one set of temporal components is multiplied by condition-dependent
weights (Russo et al. 2014). The same matrix factorization algorithms, such as
NMF, can be used to identify both types of modules, once the data matrix is
constructed by stacking data for individual conditions either along the spatial or
along the temporal dimension [see Fig. 2 in Russo et al. (2014)].

Muscle synergies may also capture more complex coordination patterns, such as
the recruitment of different muscles in a sequence, which may be described by
specific collections of muscle activation waveforms. Such spatiotemporal muscle
synergies (also known as time-varying muscle synergies) may be defined as
sequences of vectors in muscle activation space (d’Avella and Tresch 2002;
d’Avella et al. 2003):

N
m(t) = Y ¢ wi(t— 1), (2)
i=1
where m(?), as in Eq. 1, is a vector of activations in a set of muscles sampled at time
t, w(t) is now a vector representing a set of muscle activation waveforms sampled
at time 1, i.e., wj(¢) is the waveform for the j-th muscle in the i-th synergy, and c; is a
scalar combination coefficient scaling in amplitude the i-th synergy and allowing to
flexibly combine N synergies. Additionally, each sequence of vectors may be
shifted in time according to an onset parameter #;. If no time-shifts are included in
the model, m(#) can be considered as a single spatiotemporal vector, i.e., different
time samples of the same muscles are treated as different dimensions. Then spa-
tiotemporal muscle synergies may be identified from a data matrix obtained by
stacking spatiotemporal vectors for different conditions using the same matrix
factorization algorithms as for spatial and temporal synergies (Klein Breteler et al.
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2007; Russo et al. 2014). If time-shifts are included, the decomposition of the data
into spatiotemporal synergies requires identifying onset parameters in addition to
scaling coefficients and synergies. An iterative decomposition algorithm was
developed specifically for this purpose (d’Avella and Tresch 2002; d’Avella et al.
2003). Finally, in a spatiotemporal synergy the activation waveform is the same for
all muscles it can be expressed as the product of a spatial times a temporal synergy,
i.e., as a space-by-time synergy (Delis et al. 2014).

Spatial, temporal, and spatiotemporal synergy models have been used to
decompose the EMG activity recorded from multiple muscles in different species
during the performance of a variety of motor tasks. The initial studies were per-
formed in frogs (Tresch et al. 1999; Saltiel et al. 2001; d’Avella et al. 2003; Hart
and Giszter 2004), cats (Ting and Macpherson 2005), and humans (Ivanenko et al.
2003). Those and a growing number of additional studies investigating spinal
reflexes, postural control, walking, running, pedaling, reaching, hand force gener-
ation, grasping, finger movements, and many other tasks have provided support to
the modular hypothesis showing that in most conditions the muscle patterns can be
reconstructed by the combination of a small number of muscle synergies. I will now
briefly present the results of two of these studies: one investigating reaching using
spatiotemporal synergies (d’Avella et al. 2006) and a second investigating the
development of locomotion using temporal synergies (Dominici et al. 2011).

A number of kinematic and kinetic features are preserved across reaching
movement conditions, such as the straightness of the hand path and the shape of the
tangential velocity profiles for different planar movements (Morasso 1981), the
specific hand path for movements at different speeds or with different loads
(Soechting and Lacquaniti 1981; Lacquaniti et al. 1982; Atkeson and Hollerbach
1985), the linear relation between torques at different joints (Soechting and
Lacquaniti 1981; Lacquaniti et al. 1986; Gottlieb et al. 1997). Such invariances
suggest that the CNS uses simple rules for controlling reaching. In contrast, the
EMG patterns for reaching show complex changes in the shape and timing of the
muscle activation waveforms as a function of movement direction and speed
(Flanders et al. 1994, 1996). The apparent discrepancy between regularities in the
kinematic and kinetic features and variability of the muscle patterns for reaching
may be resolved at the level of muscle synergy organization. The decomposition of
the EMG patterns for reaching in different directions and at different speeds shows
that the complex dependences of the muscle activation waveforms on movement
parameters result from the combination of a small number of spatiotemporal muscle
synergies according to simple rules (d’Avella et al. 2006, 2008). Combinations of
four or five spatiotemporal synergies could accurately reconstruct the phasic EMG
waveforms recorded from up to 19 shoulder and arm muscles during fast
point-to-point movements between a central location and eight peripheral targets in
both a frontal and a sagittal plane (d’Avella et al. 2006). Phasic waveforms,
responsible for accelerating and decelerating the arm, were computed by subtracting
the tonic components used for balancing gravitational forces and maintaining
postural stability (Flanders 1991). The extracted synergies involved specific subsets
of muscles, _acting_at multiple joints_and with synchronous and asynchronous
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waveforms. In many cases, individual muscles were recruited by more than one
synergy. The good reconstruction of the muscle patterns for movements in different
directions with five synergies [see Fig. 8 in d’Avella et al. (2006)] demonstrates the
accuracy of the spatiotemporal synergy model and the parsimony of the synergy
representation of the muscle patterns. The entire set of waveforms constituting a
muscle pattern for a specific movement could be generated by selecting five
amplitude coefficients and five onset times. Moreover, movement direction and
speed modulated the amplitude coefficients according to simple rules. The synergy
amplitude coefficients depended on the movement direction in most cases according
to a cosine function. When movement speed varied in addition to movement
direction, phasic spatiotemporal synergies maintained the same directional tuning
and were modulated in amplitude by speed (d’Avella et al. 2008). These simple
modulation rules support the notion of muscle synergies as a mechanism for
implementing a direct mapping of movement goals into motor commands.

Modular decomposition of EMG patterns may also provide insights on motor
development. Whether the muscle activation patterns for locomotion are innate, or
whether they are acquired during development is an important question. A study of
temporal synergies underlying locomotion (locomotor primitives) at different
developmental stages demonstrated that there are both innate and learned modules
(Domiinici et al. 2011). Human newborns, supported and with their feet in contact
with a surface, generate stepping-like movements that generally disappears
at ~2 months after birth. Decomposition of EMG activity during newborn step-
ping by NMF revealed two primitives that were roughly similar to two of the four
primitives observed in the adult, but more prolonged in duration. As in adults, one
primitive was related to body support during stance, while the other to limb flexion
during swing. In newborns, however, there were no specific primitive related to
either touch-down or lift-off. In toddlers (~ 1-year-old) at their first unsupported
steps, in addition to the same two primitives seen in the newborn, two new prim-
itives timed at touch-down and lift-off appeared and they were similar to the two
other primitives seen in the adult. In preschoolers (2—4 years), all four primitives
changed shape with increasing age, becoming narrower and closer to the adult
waveforms. Moreover, comparing the development of locomotor patterns in
humans with that in other vertebrates it appears that locomotion of several animal
species is built starting from common modular elements, perhaps related to
ancestral neural networks. However, with development, the motor patterns may be
adjusted to satisfy the specific biomechanical requirements of a given animal
species, such as those for erect bipedal locomotion in humans.

The studies briefly reviewed above and many other studies based on the
decomposition of multi-muscle EMG recordings indicate that muscle synergies
capture regularities in the spatial, temporal, and spatiotemporal organization of the
muscle patterns, supporting the notion that the CNS organizes muscle synergies to
simplify control. However, the observed regularities might also derive from
biomechanical constraints. The low dimensionality of the muscle patterns captured
by muscle synergies might simply reflect the limited number of ways in which a
task _can_be performed by the musculoskeletal system. For example, the
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dimensionality of the set of muscle activation vectors capable of generating all
feasible forces at a limb endpoint is smaller than the number of muscles involved
(Kutch and Valero-Cuevas 2012), suggesting that some of the observed reduction in
the dimensionality of muscle patterns might not come from neurally organized
synergies. Direct evidence for a neural organization of muscle synergies thus
requires going beyond descriptive approaches and testing muscle synergies as a
causal model.

Modularity Predicts Learning Difficulty

In a modular control architecture, acquisition of a new motor skill or adaptation of
an existing skill after a perturbation may occur at the level of modules or at the level
of module combinations. Considering a modular architecture based on spatial
muscle synergies, the sensorimotor transformations mapping a goal g and an initial
limb state x into a muscle activation pattern m(t), can be written (see Eq. 1) as

N
m(;g,x) = > ciltgx (3)
i=1

assume that the synergies w; do not depend on the goal and the initial state. Then,
for a set of tasks for which those synergies provide an adequate basis for the
generation of the motor commands, different task goals are achieved by selecting a
different combination of the existing synergies. Figure la represents schematically
such mapping in baseline condition, i.e., before attempting to learn a new task or to
adapt to a perturbation. A new motor skill is compatible with the existing synergies
if it can be acquired by learning a new mapping of goals and initial state onto the
existing synergies (Fig. 1b). Similarly, a perturbation to a task is compatible with
the existing synergies if it can be compensated by adapting the mapping between
goals and initial states onto the existing synergies (Fig. 1c). Throwing while
wearing prism glasses (Martin et al. 1996) provides an example of a perturbation
and a new motor skill likely compatible with existing synergies. Immediately after
wearing prism glasses, which deviate the light path laterally so that the direction of
gaze deviates from the target direction, subjects throw in the direction of gaze and
show large errors. With practice, subjects gradually adapt to the perturbation of the
mapping from visual targets to muscle patterns induced by the prisms and throw
accurately again. As there is no need to change the throwing movement and, thus,
to adapt the muscle synergies underlying the throwing skill, adaptation likely
occurs at the level of the mapping of visual targets onto synergy combinations.
Indeed, invariance of synergy structure has been observed during adaptation to a
visuomotor rotation in a force reaching task (Gentner et al. 2013). After removal of
the glasses, errors are in the opposite direction with respect to the initial error
(aftereffect), indicating that the original mapping has been altered, and additional
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practice is required to gradually return to baseline performance. However, if sub-
jects continue practicing throwing with and without prism glasses after a few weeks
they are able to throw accurately immediately after wearing and removing the
glasses. A new throwing skill, throwing with prism glasses, is therefore acquired
with extensive practice and it can be recalled immediately without interfering with
the unperturbed throwing skill. In terms of modular architecture, both skills rely on
the original muscle synergies for throwing but a new mapping of goals and initial
states onto synergy combinations is acquired. Finally, new skills and perturbations
may also be incompatible with the existing synergies and may require new syn-
ergies. New synergies may be added to the set of existing synergies (Fig. 1d) or
they may be obtained by adapting one of multiple existing synergies (Fig. 1le). For
example, learning to walk, as discussed above, requires reusing existing synergies
as well as organizing new synergies.

One advantage of a modular control architecture for motor learning and motor
adaptation is that it may achieve flexibility without affecting stability of motor per-
formance. In the CNS, acquisition of new motor skills and adaptation of existing
skills involve changes in synaptic connections. The more plastic the CNS is, the
easier is to learn and adapt the required sensorimotor transformations. However, if
the CNS is too plastic and the pattern of synaptic connectivity is constantly changing,

i i il learning of a new incompatible skill
a b learning of a new compatible ski d g P
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Fig. 1 Learning in a modular control architecture. a Schematic representation of the sensorimotor
transformations of goal (g) and initial limb state (x) onto muscle patterns through combinations
[c*(t; g, x)] of muscle synergies (w*). b Learning a new compatible skill by acquisition of a new
mapping of goals and initial states onto synergy combinations (¢* — {c*, c¢®}). ¢ Adapting to a
compatible perturbation by adapting the original mapping (c* — c®). d Learning a new
incompatible skill by adding new synergies (w* — {w® w"}). e Adapting to an incompatible
perturbation by changing the existing synergies (w* — w")
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the storage of sensorimotor transformations may become unstable. New motor skills
may erase existing ones. In a noisy and highly redundant neural network such as the
CNS, a way to address such stability—plasticity dilemma may be to segregate synaptic
weights corresponding to different skills in different regions of the huge synaptic
weight space that, even when weights are hyperplastic, represent and maintain stable
sensorimotor transformations (Ajemian et al. 2013). By operating distinct adaptive
processes at the level of modules and module combinations, the CNS may achieve a
trade-off between stability and plasticity and facilitate the acquisition of segregated
synaptic representations of different skills. Acquisition of skills and adaptation to
perturbations compatible with the existing modules may require adjusting a smaller
number of synaptic weights than acquiring skills or adapting to perturbations
incompatible with the modules, which must represent in their synaptic weights all
necessary knowledge of the dynamic behavior of the musculoskeletal system to
implement adequate sensorimotor transformations. However, a larger synaptic
weight space has more capacity for storing different modules in segregated and
noninterfering (i.e., orthogonal) regions of the space. Thus, learning or adapting an
existing skill through recombination of modules is likely a faster adaptive process
than learning or adapting a skill by acquiring new modules.

Faster learning of module combinations than of module structure has been
demonstrated in a simulation of a reaching task with a musculoskeletal model
(Ruckert and d’Avella 2013). Spatiotemporal muscle synergies and synergy com-
bination coefficients generating shoulder and elbow joint torques for reaching six
different targets on a sagittal plane can be learned by reinforcement with hand
distance from the target and squared muscle activation as costs. Modeling the
muscle activation waveforms for each synergy as Gaussian pulses and allowing
each synergy to be scaled in amplitude and shifted in time, with four synergies and
11 muscles, there are 132 task-invariant synergy structure parameters and 48
task-specific synergy combination coefficients. It takes about 3000 simulated trials
to learn these parameters with a stochastic search method and achieve a good
reaching performance. However, once synergy structure is learned, adaptation to a
30° target rotation by relearning only the synergy combination coefficients takes
only less than 200 trials. Thus, a modular representation of the motor commands
makes learning of the representation feasible relying only on a reinforcement signal
and makes adaptation after a compatible perturbation very fast.

As learning or adapting a skill through recombination of modules is likely a
faster adaptive process than learning or adapting a skill by acquiring new modules,
modularity predicts that the difficulty in motor learning depends on the compati-
bility with the modules. Thus, comparing the difficulty for learning or adapting
skills which are either compatible or incompatible with the modules allows testing a
prediction of the modular hypothesis. Consider a perturbation of the way in which
the activation of the muscles acting on the arm generates force at the hand, such as a
surgical rearrangement of the tendons. Imagine a tendon transfer that alters the
amplitude and direction of the forces generated by the muscles involved in a
specific spatial muscle synergy. If the forces are altered such that they cancel each
other_when_the muscles_are activated according the balance prescribed by the
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synergy, recruiting that synergy would generate zero force [see Fig. 1 in Berger
et al. (2013)]. Thus, to compensate such incompatible perturbation it would be
necessary to generate muscle activation patterns that are not in the direction of the
synergy made ineffective by the tendon transfer. If synergies are only a description
of the regularities in the muscle patterns generated by a control architecture that has
direct access to individual muscles, it should be equally difficult to generate new
muscle patterns when they can be expressed as synergy combinations as when they
cannot. In contrast, if the CNS relies on a set of muscle synergies to generate
muscle patterns, if the new muscle patterns required to overcome the perturbation
cannot be generated by the synergies, the synergies must be adapted or new syn-
ergies must be learned. Thus, if muscle synergies are organized by the CNS,
adapting to an incompatible perturbation is expected to be more difficult than
adapting to a compatible perturbation. In contrast, if synergies are just a description
of regularities generated by a controller that has access to individual muscles,
adapting to an incompatible perturbation is expected to be equally difficult than
adapting to a compatible perturbation, provided that the required changes in the
activation of individual muscles are comparable in the two cases.

A recent study in which human subjects used myoelectric control to move a
mass in a virtual environment has tested the prediction that in a modular archi-
tecture adaptation to incompatible perturbations must be harder than adaptation to
compatible perturbation (Berger et al. 2013). Subjects were instructed to perform a
reaching task by displacing a cursor according to either the isometric force applied
on a transducer attached to a forearm, wrist, and hand splint (force control) or the
force estimated from the EMG activity recorded from many shoulder and arm
muscles (myoelectric or EMG control). The cursor and the reach targets were
spheres displayed by a flat monitor occluding the subject’s hand and appearing on a
virtual desktop matching the appearance and position the real desktop. Initially the
reaching task was performed using force control and, for each individual partici-
pant, the force and EMG data collected were used to estimate, using multiple linear
regression, a linear mapping between the recorded EMG activity of each muscle
and the force generated at the hand [EMG-to-force matrix, see Fig. 3 in Berger et al.
(2013)]. EMG data were also used to identify spatial synergies using NMF and to
estimate, through the EMG-to-force matrix, the force generated by each synergy.
Subjects then performed the rest of the experiment using EMG control. In baseline
condition, i.e., when the movement of the cursor depended on the force computed
with the unperturbed EMG-to-force matrix, subjects were able to perform the task
immediately after switching from force control, showing that the linear mapping
was sufficiently accurate. Because the forces were computed in real-time by “vir-
tual” muscles, it was possible to arbitrarily modify the EMG-to-force mapping and
to perform the type of tendon transfers discussed above, i.e., a “virtual surgery” on
the musculoskeletal system. This allowed to compare the adaption rate after a
surgery compatible with the muscle synergies identified in force control with the
adaptation rate after an incompatible surgery. Both compatible and incompatible
surgeries were generated by transforming the instantaneous muscle activity vector
through a multidimensional rotation in_muscle space, which affected the amplitude
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and direction of the force generated by each muscle in a complex way but by an
equal amount, on average across muscles, in the two cases. However, after a
compatible surgery, the forces generated by the synergies, also transformed in a
complex way, could still span the force space, i.e., could be combined to generate
any force. In contrast, after an incompatible surgery, the forces generated by the
synergies were aligned along a single direction and did not span the force space.
Forces in any other direction required generating muscle patterns that could not be
obtained by synergy combinations.

Task performance, quantified by the angular error of the cursor’s initial move-
ment direction with respect to the target direction and by the fraction of trials in
which the cursor did not reach and hold the target position in the available time [see
Fig. 6 in Berger et al. (2013)], dropped significantly in the first block after both
types of surgeries but it then improved faster after a compatible surgery than after
an incompatible surgery. The performance in the last block after the compatible
surgery was significantly better than after the incompatible surgery. Performance
improvements after incompatible surgeries, even if they occurred significantly more
slowly than after compatible surgeries, were associated with changes in the muscle
patterns that could not be captured by the original muscle synergies. There was a
significant reduction of the muscle pattern reconstruction quality [see Fig. 8 in
Berger et al. (2013)] at the end of the exposure to incompatible virtual surgery with
respect to compatible virtual surgery. In sum, differences in adaptation rates after
compatible and incompatible virtual surgeries support a neural organization of
muscle synergies and suggest that a slower synergy adaptation process is active
when the set of synergies usually employed for a task becomes ineffective.

Take Home Message

In this chapter, I have suggested that the CNS relies on modularity to reduce the
complexity of motor control by embedding features of both the dynamic behavior
of the musculoskeletal system and of the task into a small number of modules and
by directly mapping task goals into module combination parameters. Evidence for
muscle synergies as modules has come from the decomposition of EMG patterns
recorded in many species and tasks. For example, the combinations of small
number of spatiotemporal synergies explain the organization of the muscle patterns
across reaching movement directions and speeds and synergies are modulated in
amplitude according to simple rules. Finally, in a modular architecture, acquisition
of a new motor skill or adaptation of an existing skill after a perturbation may occur
at the level of modules or at the level of module combinations. As learning or
adapting an existing skill through recombination of modules is likely faster than
learning or adapting a skill by acquiring new modules, compatibility with the
modules predicts learning difficulty. The observation of slower adaptation after
incompatible than after compatible virtual surgeries provides direct evidence for
modularity_in_motor, control and motor learning.
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Synergies in Grasping

Jeroen B.J. Smeets and Eli Brenner

Abstract The reach-to-grasp movement is a prototype of human movement
coordination. Since the pioneering work of Jeannerod (Attention and performance,
ix. Erlbaum, Hillsdale, NJ, pp 153-169, 1981), this movement is generally con-
sidered to be a coordinated combination of hand transport and grip formation. One
of the main theoretical reasons for choosing transport and grip as building blocks is
that they are anatomically independent: one can determine whether each muscle,
joint, or brain area belongs to transport or grip. We have proposed a different view
on grasping, in which the coordination problem is formulated as one related to the
movements of the digits (Smeets and Brenner in Motor Control 3:237-271, 1999).
According to this view, both the transport of the hand and the formation of the grip
emerge from the combination of independent digits’ movements toward the objects’
surface. This independency of the digits resembles the independence of synergies
(as discussed in the chapter of d’Avella). Different synergies are activated inde-
pendently, but a single muscle can be part of several synergies. In this chapter, we
will present three types of experiments that were designed to test to what extent the
individual digits’ movements can be considered as the building blocks of the
reach-to-grasp movement.

Keywords Reach-to-grasp - Digits - Finger-thumb asymmetry - Visuomotor -
Prehension - Hand transport - Grasp control

Introduction

Marc Jeannerod started the study of the grasping movement by postulating two
independent visuomotor channels through which visual input controls the move-
ment (Jeannerod 1981). The argumentation for this postulate was based on the
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observation that grasping can be functionally split into a reach component (bringing
the hand to the location of the target) and a grasp component (opening the hand in
accordance with the size and shape of the target). A corresponding distinction is
present in the nature of visual information: information about intrinsic properties
like shape and color (“what”) is essentially different from extrinsic properties such
as distance and orientation (“where”). Both distinctions are also thought to be
present in the neural processing: the neuromuscular system for shaping the hand is
to a large extent independent of the system that is used to transport the hand to the
object (Brinkman and Kuypers 1973) and it has been argued that there are distinct
neural pathways for “what” and “where” (Trevarthen 1968; Ungerleider and Haxby
1994).

An underlying assumption in the above argumentation is that we can understand
human sensorimotor control better if we regard it as two (neuro-) anatomically
distinct pathways, each serving a distinct function. This assumption that distinct
structures are the building blocks of behavior is not specific to the reasoning of the
papers cited above, but also underlies some other influential schemes, such as the
two visual systems hypothesis (Goodale and Milner 1992; Milner and Goodale
2006, 2008). However, one could also bring order into distributed control systems
by the concept of synergies (Lee 1984; Soechting and Lacquaniti 1989; d’Avella
et al. 2003; Ting and Macpherson 2005; Latash et al. 2007; Tresch and Jarc 2009;
Overduin et al. 2015). The cited studies all define synergy in their own way. For the
present purpose, the most important commonality is that a single biomechanical
element (e.g., muscle or joint) can be part of several synergies. Importantly, the
concept of synergies implies that there is no need to have a strict separation between
anatomical aspects of a task. The components could therefore be selected such that
they could be combined with other components to perform quite different tasks.
This is potentially a more efficient strategy, because it allows any combination of
components of movements to be combined in different ways for different tasks.
A consequence, however, is that the components might not be optimized for a
single task.

We will concentrate on kinematic synergies: movements of joints that are
controlled as a single unit. In our earlier work (Smeets and Brenner 1999, 2001,
2008; Verheij et al. 2012), we proposed that the tips of the individual digits are
controlled in grasping. In terms of synergies, we thereby assume the existence of
two synergies: a thumb synergy and an index finger synergy. Given the fact that the
index finger and thumb are part of the same hand, the two synergies’ substrates
overlap: they both contain the shoulder, elbow, and wrist; they differ in the more
distal joints.

At the level of muscles, synergies have been defined as coherent time-varying
patterns of muscle activations (d’Avella et al. 2003; Tresch and Jarc 2009). It has
been shown for force control that the directional tuning of the synergies that are
determined on the basis of the forces exerted at the end effector closely resemble the
tuning of synergies that are based on an analysis of the EMG of more than ten
muscles that are involved (Ting and Macpherson 2005). Therefore, we limit our
analysis_to_the movements_of the end effectors: the index finger and thumb. The
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essence of the concept of synergies is that the same synergies are used in many
tasks to simplify control. In other words, specific characteristics of synergies should
be visible in more than a single task. If the thumb and finger synergies are indeed
the building blocks of grasping movements, we should be able to see the signature
of the same two synergies in other tasks like pointing (we use this term for pointing
to an object by moving to touch it with a single digit). In this chapter, we will
describe three ways to study the signature of synergies in kinematics. The first way
is to study idiosyncratic differences in the kinematics of the end effector: if syn-
ergies vary between individuals, the same differences should be visible in all tasks
that involve these synergies. The second way is to adapt the synergies: if a synergy
is adapted in pointing, this adaptation should transfer to grasping. The third way is
to observe fast responses: if a target changes during a goal-directed movements, the
fastest responses should be a direct manifestation of the synergies, neglecting
higher coordination.

Idiosyncratic Kinematics

If the movements of the digits are the synergies in grasping movements, the
characteristics of the movements of the digits during grasping movements should be
similar to those of movements of a single digit. The typical grasping movement
starts with both digits at a staring position, then moving the hand toward the object
while at the same time moving the digits apart to open the hand to be able to grasp
the object (Jeannerod 1981). At about 75 % of the movement time (at 95 % of the
distance; Cuijpers et al. 2004), the digits start closing to contact the object
(Jeannerod 1984). How can we compare the movements of the digits in this task
with a movement of a single digit with similar constrains?

We argued that we could do so by looking at the difference in shape of the
trajectory between finger and thumb. If a separate finger synergy and thumb syn-
ergy exist in grasping, the resulting trajectory formation is likely to be slightly
different for the two digits. Of course, finding a difference does not prove that they
are separate synergies. It might be that the trajectory of the thumb is less curved
than that of the index finger because the thumb is transported during grasping, and
the finger moves relative to the thumb, as has been proposed on the basis of such
findings (Haggard and Wing 1997; Mon-Williams and McIntosh 2000; Galea et al.
2001). If this were the case, one would not expect to find the same difference
between finger and thumb if one were to compare the trajectories of pointing
movements with these digits. On the other hand, if the difference between finger
and thumb are completely due to differences in the synergies, one would expect the
same differences to be present in other tasks involving the same synergies. To test
these predictions one could use a task that is expected to recruit the same synergies
as in the reach-to-grasp movement, but while independently performing different
movements at different times with the two digits.
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We decided to compare the reach-to-grasp movement with the reach-to push
movement: move a single digit toward an object’s surface in order to push that
object away. This comparison is a reanalysis of the data of two of the three tasks in
an earlier study (Smeets et al. 2010). We evaluated how much the trajectories of the
two digits deviated from each other’s mirror image, both when moving together
during the reach-to-grasp movement, and when moving independently during a
reach-to-push movement. We did this by dividing each path of an active digit into
100 segments of equal length, and subsequently averaging the paths of all trials for
each of the 101 ends of the segments. We subsequently mirrored the average
trajectory of one of the digits, and aligned the start and end position with that of the
other digit, and determined the difference between the two (Fig. 1). We refer to this
difference as the finger-thumb asymmetry.

We have two hypotheses for this finger-thumb asymmetry. The first hypothesis
is based on the view that this asymmetry is based on the specificities of the control
of grasping (Haggard and Wing 1997; Mon-Williams and Mclntosh 2000; Galea
et al. 2001). If this “grasp control” hypothesis were correct, one would expect the
finger-thumb asymmetry in grasping to be consistent across subjects, and one
would not expect the asymmetry in grasping to be very consistent with the
asymmetry in pushing. In both cases, a slight asymmetry might be caused by the
underlying anatomy (reducing the similarity between subjects with different phy-
sique or introducing some similarity between tasks performed with the same arm,
respectively). On the other hand, if the asymmetry were caused by the difference
between the thumb synergy and the finger synergy (“digit control” hypothesis), one
would expect little consistent asymmetry across subjects, but one would expect
each subject to show a consistent finger-thumb asymmetry across the two tasks.
Finding such idiosyncratic asymmetries would not tell us anything about the
underlying reason for the asymmetry. It might be that small anatomical differences
between subjects are responsible. However, finding similar asymmetries, even if
due to anatomical differences, in both pushing and grasping would support the idea
that the two tasks are based on similar control mechanisms.

Fig. 1 Determining the
finger-thumb asymmetry from
the (average) movement paths
of the digits (top). The ends of
the paths were aligned and
one was mirrored (middle),
after which the separation
between the two was
determined (shown magnified
by two at the bottom)

Aligned

Asymmetry (x2)
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We assessed the asymmetry by the Pearson’s correlation coefficient between the
asymmetry values across segments of the path (based on the average of 20 trials for
a subject in a task). We did this both across tasks (within a subject), and across
subjects (within a task). We chose this method because the two digits move
independently (on different trials) in the pushing experiments, while they were
physically connected when grasping. As this physical connection limits the possible
curvature of the digits’ paths, it might change the overall size of the asymmetry. We
therefore chose to use the correlation along the path, rather than some measure of
the distance itself (such as the sum of the squared differences) as our measure of the
asymmetry. The predictions for the two hypotheses are plotted schematically,
together with the experimentally obtained values in Fig. 2.

In line with both hypotheses, the asymmetries found when pushing are not
highly correlated across subjects. This means that the differences between the
shapes of the trajectories of finger and thumb are idiosyncratic, and thus not
determined by the differences in anatomy between the two digits (which are
common to all subjects). For the other two correlations, the hypotheses made
opposite predictions. In line with the digit control hypothesis, we found that the
asymmetries when grasping are not highly correlated across subjects, just as in
pushing. So, also here, the differences in the trajectories are idiosyncratic, rather
than being determined by a control mechanism or anatomic difference that is shared
by all participants. The finding that the asymmetry in grasping is highly correlated
with that in pushing is obviously also in line with the digit control hypothesis. This
correlation means that if a certain difference between the trajectories of finger and
thumb is found when moving together while grasping, a similar difference is found
when comparing pushing with the thumb with pushing with the index finger.

The results are in line with the predictions made by assuming separate synergies
for the control of finger and thumb that are used for both pushing and grasping. The
overall correlation between subjects in the asymmetry is about 0.25 in both tasks.
This means that the consistency in the difference between finger and thumb across
subjects is not negligible, which is probably not surprising given the anatomical

10 Prediction Grasp control 10 Prediction digit control 10 Experiment
0.8 0.8 4
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Fig. 2 Predictions for two hypotheses and the actual experimental values for the correlation
between asymmetries. The correlation is calculated between the two tasks within each subject, or
between subjects within the grasp or push task. For the predictions, we plotted “strong correlation”
as 0.9, and “weak correlation” as 0.1. For the experimental data (reanalysed from Smeets et al.
2010), the error bars show the standard error of the mean across subjects and pairs of subjects
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differences between the digits. Most importantly for the present discussion is that
the consistency in the asymmetry across subjects is the same for both tasks. In terms
of the digit control hypothesis: apparently, despite the anatomical similarities
between subjects, the finger synergy and the thumb synergy differ in a consistent
way between subjects.

Visuomotor Adaptation of Synergies

Pointing

A second line of research that supports the existence of separate synergies for the
thumb and index finger is that of visuomotor adaptation. We performed an
experiment in which subjects were pointing alternatingly to the left and right side of
a cube, using the thumb and the index finger, respectively (Schot et al. 2014). The
cube could be placed at one of three positions at the far end of a wooden board.
Subjects made their (curved) movements under the board, so the hand was invisible
during most of the movement. Only the digit that made contact with the cube
became visible when it was near the cube. We used the last position of the digit
before it became visible to measure adaptation.

After a baseline phase with an unperturbed (binocular) view of the target, we
gave the subjects a special pair of prism spectacles. These spectacles contained one
leftward and one rightward deviating prism, combined with shutters. The shutters
ensured that the subjects only looked through one of the prisms; which one
depended on the movement they were asked to make. They experienced a leftward
deviated view when pointing with their thumb and a rightward deviated view when
pointing with their index finger. As subjects saw the target cube displaced 5 cm to
the left of its actual position when moving the thumb, subjects initially moved their
thumb to a position 5 cm more to the left than without a prism. In a next trial (with
the index finger), subjects saw the cube 5 cm to the right, leading to an error in the
opposite direction. After 45 trials with each digit, we removed the prisms, and let
the subjects view binocularly again. Comparing the behavior in the post-adaptation
phase with the baseline is a clean measure of the effect of adaptation of the digits’
movements. In a second session, we reversed the pairing (Schot et al. 2014). What
do we expect to happen to the arm movements?

Visuomotor adaptation can be divided in a visual and a motor (proprioceptive)
component (Redding and Wallace 1988). As human vision combines the images of
the two eyes from early vision on, the visual part of the adaptation will be common
for the movements of both digits, and thus cancel each other. If one does not
assume that separate synergies for the control of the digits’ movements adapt
independently, but assumes that each of the joints adapts independently, one would
predict that adaptation will be distributed over the joints that are involved in the
movement (depending on how much each joint contributes to the movement). As
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the shoulder, elbow, and wrist are responsible for most of the transport of the digits
in space, this would mean that most of the adaptation would occur in these joints.
The consequence would be that the effect of the two opposite perturbations would
cancel each other. We would therefore expect very little adaptation. Only infor-
mation about the orientation of the eyes and of some joints in the hand would adapt.
If the synergies underlying the finger and thumb movements adapt, one would
expect considerable adaptation of both synergies in opposite directions.

What we found is that both digits adapted to the visual displacement that was
associated with their own movement (Fig. 3b, c). The adaptation that was obtained
was about 60 % for both digits (asymptotes in Fig. 3). Each digit’s adaptation
resembled the conventional result for viewing through prisms (Martin et al. 1996)
or moving through force fields (Shadmehr and BrashersKrug 1997). Such adapta-
tion can be described by various models of (sensori-)motor learning (Smeets et al.
2006; Smith et al. 2006). The results are therefore consistent with the predictions
based on independent synergies for the index finger and thumb.

The adaptation was incomplete. This could be interpreted as evidence that the
adaptation of the two digits was not independent. However, it has been shown that
in conditions with terminal feedback continuous forgetting can lead to incomplete
adaptation (van der Kooij et al. 2015). If forgetting were the cause of the incomplete
adaptation in Fig. 3, a similar incomplete adaptation would be obtained for blocks
of trials with only movements of the thumb (or of the index finger), although the
adaptation would probably be less incomplete because the trials with the same digit
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Fig. 3 Simultaneous adaptation of index finger and thumb to opposite prism displacement; data
are reanalysed from (Schot et al. 2014). a Side and top views of the subject performing a finger
pointing movement. The hand remains invisible until just before the end of the movement. b,
¢ behavior for the two sessions with opposite pairing between the digit that was moving and the
viewing eye (and therefore the direction of the displacement). Points average response of the eight
subjects. Curves exponential fit to the data points (constrained to have a change in deviation equal
to_the size of the prism-induced displacement at the time of addition/removal of the prism)
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Fig. 4 Adaptation with
alternating prism-digit
association compared with a
blocked association. In the
latter case there is complete
adaptation
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will be closer to each other in time (or number of movements). We tested this with a
small number of subjects (3), and found complete adaptation (Fig. 4). Apparently,
the present paradigm (involving real prisms and goal-directed movements that
contact the targets) does not lead to trial-to-trial forgetting. We do not know why,
but perhaps the presence of haptic feedback in the present experiments is important
(Cuijpers et al. 2008; Schenk 2012). Thus, the adaptation that we found on its own
does not provide conclusive evidence for adaptation within synergies related to the
digits.

Transfer to Grasping

In the previous section, we argued that we could adapt the synergies for the thumb
and index finger separately. The main claim in this chapter is that the same syn-
ergies that are used in pointing are used in the reach-to-grasp movement. If this
claim is correct, adaptation of the synergies during pointing should result in an
aftereffect in the reach-to-grasp movement. As the adaptation is in opposite
directions for the two digits, we predict that the aftereffect of adapting pointing
movements will be an increase or decrease of grip aperture (depending on the
direction of adaptation).

The best way to test a prediction for the transfer of an aftereffect from pointing to
grasping would be to make it quantitative. However, based on Fig. 3b, we realized
that such a prediction would be unrealistic. After removal of the prisms, the pre-
dicted deviation of each digit has changed by about 3 cm. For grasping, this would
imply that the grip aperture would be either increased or reduced by 6 cm,
depending on the pairing between prism and digit during the adaptation phase. As
our objects’ widths are less than 5 cm, the planned positions for the digits in the
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aftereffect of the thumb-left pairing would correspond to a crossed configuration of
the thumb and the index finger. And the planned positions for the digits in the
thumb-right pairing would correspond to the grip aperture for an extremely large
object, bigger than any object used in research on the precision grip (Smeets and
Brenner 1999). In both cases, the planned end configuration is outside the normal
range (left part of Fig. 5), inevitably leading to limited transfer. Therefore, we
cannot expect to have full transfer of the aftereffect of adaptation from pointing to
grasping, so we limit our prediction to a qualitative one: there will be clear transfer
from pointing to grasping.

To test this prediction, we repeated the adaptation experiment, and made one
change relative to the experiment described above: we not only varied the position
of the block, but also its size. In this way, we ensured that all parameters of grasping
that might be controlled vary between trials: both the contact positions (our theory)
and the position and size of the target (classical theory). Note that the visual
perturbation that we applied in the adaptation phase only shifted positions, leaving
the size of the objects unaltered.

The right panel of Fig. 5 shows that in all three conditions, grip aperture scales
in a normal way with object size. Importantly, apertures are larger after adaptation
of pointing with the thumb-right pairing than after adaptation with the opposite
pairing. In this figure, we see a slightly smaller effect for the large object in the
thumb-right pairing, presumably due to the ceiling effect that we predicted for this
pairing. For the opposite pairing, we frequently observed that subjects’ digits
touched each other once or twice in the first few trials of grasping, in line with the
prediction of the bottom-left of Fig. 1. The transfer from pointing to grip aperture
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Fig. 5 Transfer from pointing to grasping. Left panel the paths corresponding to 100 % transfer
for both pairings. The solid squares represent the target; the open squares and curves represent the
situation corresponding with a full aftereffect. These paths are impossible to produce. Right panel
the actual grip apertures when the digits were approaching the border of the board (for the two
target sizes). There is a clear transfer of the aftereffect
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shows that grasping is not controlled fundamentally differently from moving the
individual digits during pointing. Assuming that synergies regulate movements of
the thumb and index finger separately, irrespective of the task, provides a parsi-
monious explanation for these findings. Assuming that grip aperture is regulated by
a separate synergy involved in grasping cannot account for the transfer.

Fast Responses to Perturbations

Humans are known to be able to adjust their movements to changes in the position
of a target with a very short (~110 ms) latency (reviewed by Cluff et al. 2015;
Smeets et al. 2016). Such fast responses are very interesting, as they must be based
on the least amount of information processing possible: a fast link between visual
information and the fundamental elements of control. As these fast responses do not
take into account all information, the responses can sometimes be counterproduc-
tive. We showed this for a situation in which an obstacle is initially positioned to
the left of the line connecting the hand to the target. In unperturbed trials, subject
then veer slightly rightward. If this obstacle jumps to the right of the line, the
optimal response would be to veer slightly leftward. This is however not what
happens: subjects follow the target, and veer more to the right, and therefore hit the
obstacle (Aivar et al. 2008). The reason is probably that the movement was planned
to pass the obstacle on the right, and the first response to a change in position was a
direct response to the change in the obstacle’s position, without reconsidering one’s
options.

As fast responses link low-level elements of perception to those of motor con-
trol, they can be used to reveal the synergies that underlie grasping behavior. This
has been done in paradigms that involved changes in the position and/or size of an
object (Paulignan et al. 1991a, b; Smeets et al. 2002; van de Kamp and Zaal 2007;
Hesse and Franz 2009; van de Kamp et al. 2009). For instance, the fact that a
perturbation of the contact position for one digit sometimes has a small effect on the
trajectory of the other digit (van de Kamp and Zaal 2007) has been used to argue
that they cannot be controlled independently. However, the coupling between the
digits can also be mechanical. We therefore present data on responses to object
rotation.

There are relatively few studies on responses to object rotation when grasping
(Desmurget et al. 1996; Voudouris et al. 2013). The oldest experiment showed that
you can adjust the orientation of your hand during a whole-hand-grip grasping
movement to a change in object orientation with a short latency (Desmurget et al.
1996). In our experiment (Voudouris et al. 2013), we let subjects grasp lightweight
objects (a cube or a sphere) with a precision grip. The objects were magnetically
connected to a motor that could rotate them very quickly over 12° (clockwise or
counterclockwise) as soon as the subject initiated their grasping movement. For
grasping the cube, it is clear that subjects should respond to the perturbation,
otherwise. their grip.orientation will not coincide with the surfaces of the cube. For
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grasping the ball, rotating the hand in response to the ball’s rotation does not
provide any advantage. What would we expect for various direct couplings between
visual information and controlled synergies?

According to the grasp control hypothesis, the presumed synergies are the
transport and grip: the transport synergy, that includes the orientation (Jeannerod
1981; Desmurget et al. 1996), is coupled to the extrinsic object properties position
and orientation, whereas the grip synergy is coupled to the intrinsic object property
size. As none of these properties changes when a ball rotates, this hypothesis
predicts no response (which is indeed optimal). According to the digit control
hypothesis, the presumed synergies are the digit’s movements. These movements
are directed to suitable contact positions on the surface of the object. So, if the
object rotates, the intended contact positions move, which will lead to fast
adjustment of the digits’ movements.

In line with the prediction of the digit control hypothesis, we always see a fast
response to object rotations (Fig. 6). The sign of the response depends on the
direction of the rotation: the digits follow the object’s surface. The response is
initially the same for the cube and the ball, but continues for more than 200 ms for
the cube (left panel), whereas it disappears within 50 ms for the ball (central panel).

To test whether the short duration of the response for the ball is due to a
reselection of grasping points, we performed an experiment in which the cube was
placed in an ambiguous orientation that allowed for two grasping orientations (right
panel of Fig. 6). We restrict our analysis to the subjects who changed their grip
orientation in response to the perturbation. We see an initial following response that
stops after about 50 ms and reverses its direction. This response is very similar to
the response to the rotation of the ball. Thus the fastest response consists of digits
following the local position on the surface, whereas only the later parts of the
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Fig. 6 The velocity of rotation of the grip in response to target rotations in opposite directions.
Data replotted from Voudouris et al. (2013). The gray area indicates times at which the rotation
speed differed for the two directions. Three conditions are displayed: grasping a cube for which it
is clear by which surfaces it can best be grasped (left), grasping a ball (center), and grasping a cube
that is oriented so that it is not evident how best to grasp it (right). In the latter case, subjects
sometimes switch their choice of surfaces in response to the perturbation. In all conditions we see
an initial fast response in the direction of the rotation of the target (solid curves above dashed
ones). For the ball and the cube with the ambiguous orientation, subjects chose new contact points
within 50 ms of their initial response
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response consider the object’s shape (for the ball) and orientation (for the cube).
The results of the fast responses thus suggest that the synergies are therefore related
to the positions on the surface of the object (i.e., digit control), rather than to the
object as a whole (grasp control).

Take Home Message

We used three totally different paradigms to study whether the classical grip control
(with synergies transport and grip) or digit control (with synergies for the indi-
vidual digits) yield the most comprehensive description of the reach-to-grasp
movement. We found that the peculiarities of the digits’ movements varied con-
siderably between subjects, but were (within a subject) remarkably consistent across
grasping with two digits and pushing with a single digit. Second, we showed that by
using prisms, we can adapt the pointing movements of finger and thumb in opposite
directions, and that the aftereffect of these adaptations transfers to grasping. Third,
we show that when grasping a ball with a precision grip, the digits show a fast
following response to a (task-irrelevant) rotation of the ball. All these findings
suggest that the elements that are controlled in grasping are synergies for the
individual digits, rather than synergies for transport and grip.
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Encoding Temporal Features of Skilled
Movements—What, Whether and How?

Katja Kornysheva

Abstract In order to reliably produce intelligible speech or fluently play a melody on
a piano, learning the precise timing of muscle activations is essential. Surprisingly, the
fundamental question of how memories of complex temporal dynamics of movement
are stored across the brain is still unresolved. This review outlines the constraints that
determine whether and how the timing of skilled movements is represented in the
central nervous system and introduces different computational and neural mechanisms
that can be harnessed for temporal encoding. It concludes by proposing a schematic
model of how these different mechanisms may complement and interact with each
other in fast feedback loops to achieve skilled motor timing.

Keywords Motor timing - Spatiotemporal control - Sequence learning - Modular
representation - Cortico-subcortical loops

Introduction (“What”)

In the middle of the past century, the engineer and photographer Gjon Mili developed a
technique to capture trajectories of movements in space such as those produced by
musicians, athletes and painters using stroboscopic cameras. He was able to record
skilled movement sequences by attaching a light to the subjects’ effector of interest,
such as the hand holding the violin bow, and letting the movement unfold in darkness
with a long film exposure. The artist himself was only captured towards the end of the
sequence when illuminating the room (Fig. 1a). Recording these trajectories revealed
the skillful movement sequences humans are able to retrieve from memory and produce
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Fig. 1 a Example of a skilled motor sequence depicted in two-dimensional Cartesian space
(x and y) (adapted from http://www.telegraph.co.uk/culture/culturepicturegalleries/7073785/On-
the-Move-Visualising-Action-at-the-Estorick-Collection-of-Modern-Italian-Art.html?image=4).
Repeating the skilled sequence can lead to the clustering of time points 75 to T, following the
onset of movement (7;) respectively. Note that while here for illustrative purposes the
variability of the spatial trajectory across trials is ignored, in reality the clustering across trials
would take into account both space (position) and time (colour), cf. Laje and Buonomano
(2013). b An example of a variable of interest during motor production such as dynamics (force)
on a finger keyboard during a timed finger sequence task (adapted from Kornysheva and
Diedrichsen 2014). Other variables of interest could be different kinematic measurements such
as position and velocity depending on the motor task requirements. Accordingly motor timing
can be quantified as time differences between task-relevant extrinsic stimuli and intrinsic
states—such as maximum finger force after a go cue (AT,_), eyelid position or velocity after a
conditioning stimulus in eyeblink conditioning, the interval between two finger presses defined
as the points of maximum velocity for each finger (ATs_4), or the movement duration, i.e. the
difference between the offset and the onset of a movement (AT;_¢)

with their body in space. What remained invisible to Mili’s lens is how the captured
trajectory unfolded in time. It is left to the observer’s imagination what velocity,
acceleration and deceleration patterns the trajectory follows, how these spatial patterns
emerged in time—its temporal features.

While traditionally the focus in motor neuroscience has been on the spatial
dimension of movement sequences, such as the ordering or evolution of movements
in space (Tanji and Shima 1994; Graybiel 1998; Hikosaka et al. 2002; Shenoy et al.
2012), the temporal dimension is equally crucial for the production of many skilled
actions. Producing muscle activations in a correct order, but with inaccurate timing
can have detrimental effects on performance in domains such as speech, complex
tool use and music—a verbal utterance would become incomprehensible to the
receiver, the tennis racket would miss the tennis ball and the violinist would
desynchronize from the orchestra’s pace.

At a purely descriptive level, skilled timing of a movement sequence in space entails
that the movement has a reproducible temporal structure relative to an external stimulus
or an internal motor state such as the occurrence of a movement onset. Here repro-
ducibility entails that there is a certain level of temporal accuracy—typically within tens
of milliseconds for most skilled motor sequences—relative to such a point of reference,
when reaching a particular extrinsically (e.g. in Cartesian space) or intrinsically (e.g. in
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joint or muscle space) defined state of the body. Thus, when repeating a skilled spatial
sequence of movements such as the position of the hand controlling the bow, the
particular points in time (75, T5) after movement onset time (77), cluster at the same
extrinsic positions of the bow in two-dimensional space (x and y coordinates), respec-
tively. In other words, a certain spatial configuration is reached at about the same time,
with the degree of clustering reflecting the temporal precision of the movement. The
temporal pattern of a movement trajectory becomes particularly evident with increased
jerk, which reflects the strength of changes between acceleration and deceleration and
whether the movement sequence contains activation pauses such as in a finger pressing
task (Fig. 1b). Defining the motor points of interest is more straightforward for the latter
type of actions (Fig. 1b), as they involve discrete kinematic events. When measuring
motor timing, the timing of several kinematic and dynamic variables may be of interest
depending on the motor task requirements, such as the variability of the spatial trajectory
in time, the interval between an external stimulus and the maximum force, position,
velocity, of a movement, etc., as well as between movements produced using the same
or different effectors. Thus, in principle these variables may capture different aspects of
temporal dynamics of skilled motor sequences as diverse as typing out a Morse code
involving one effector and uttering a word or phrase which engages hundreds of mus-
cles, both of which have to be executed with precise timing.

How does the nervous system represent and integrate the temporal features of
such spatio-temporal sequences?

Representation of Timing for Spatio-temporal Skills
(“Whether”)

Regularity or precision of a behavioural feature such as the temporal or spatial
structure of a movement does not entail that the central nervous system
(CNS) forms a dedicated representation or control mechanism for this feature.
While goal directed and skilled movements have been shown to be sub-served by
dedicated representations of force, direction, temporal order of muscle activations or
a trajectory of movement in space (Evarts 1968; Georgopoulos et al. 1982;
Hikosaka et al. 2002; Averbeck et al. 2002; Churchland et al. 2006; Shima et al.
2007; Shenoy et al. 2012) the presence of a dedicated substrate for encoding the
timing for spatio-temporal motor skills is under debate.

In a series of experiments, Mussa-Ivaldi and colleagues demonstrated that the motor
system is inherently biased to learn velocity-dependent over time-dependent repre-
sentations during force field adaptations (Conditt and Mussa-Ivaldi 1999). Subjects
performed reaching movements and were perturbed by force fields dependent either on
the time after movement onset (time-dependent) or on the velocity (velocity-dependent,
proportional to velocity) of the movement. Crucially, aftereffects and adaptation were
evaluated in the context of generalization, when subjects were tested on circular instead
of the trained reaching movements. These experiments revealed that after training on a
time-dependent force field, generalization to a new movement was indistinguishable
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from the aftereffects and adaptation to velocity-dependent training. The authors con-
cluded that there is an automatic bias to learn state-dependent instead of time-dependent
representations during motor adaptation. Notably, the force field profile employed in
the time-dependent condition was designed to be similar to a velocity-dependent force
field, involving a bell-shaped perturbation with a maximum force in the middle of the
movement when subjects produced the highest velocity. The primacy of
state-dependent representations occurred when a perturbation environment was similar
to a viscous field (water like environment). It is thus feasible that time-dependent force
field profiles that are less correlated with movement velocity may override this bias.

However, in a follow-up study, Mussa-Ivaldi and colleagues (Karniel and
Mussa-Ivaldi 2003) demonstrate that a time-dependent force field that is uncorre-
lated to movement velocity still produces no motor adaptation. Here the
time-dependent force followed a sinusoidal amplitude at 3 Hz and was presented
continuously during the experiment. This important study suggests that the CNS is
unable to form a representation of a regular, temporally predictable force profile that
is uncoupled from state-dependent representation. However, the employed
time-dependent perturbation was not coupled to the onset of the movement as in the
previous experiment (Conditt and Mussa-Ivaldi 1999), or at least to an external cue
relevant to movement initiation. It can thus be hypothesized that this link may be a
constraint for the acquisition of a time-dependent movement adaptation.

Indeed, Medina and colleagues demonstrated that learning motor timing during
adaptation in smooth pursuit eye movements could be independent of
state-dependent encoding (Medina et al. 2005). In training trials, a target moved
horizontally for a fixed duration (500 ms) and deflected vertically from a horizontal
to vertical movement. Probe trials were used to assess adaptation by looking at eye
movement velocity into the vertical direction. Learning to time movements cor-
rectly was independent of the position of the eyes on the horizontal plane and of the
distance/velocity of the movements. Importantly the adaptation effects were
dependent on the predictive power of each variable. If both the time from target
motion onset and the distance travelled were equally predictive, the adapted eye
movements were a mixture of the two representations, whereas if only one variable
was predictive of the vertical perturbation, the adaptation reflected the learning of
time or distance only, respectively. This highlights the flexibility of motor adap-
tation with regard to the representation of time and space depending on which
variable leads to task success.

Diedrichsen and colleagues showed that time- and state-dependent representation of
spatio-temporal movements that involves the coordination of two effectors—the arm
and the thumb—depends on whether their activation overlaps in time (Diedrichsen
et al. 2007). Following a training phase in which the movements had to be timed
precisely, the subjects were asked to reduce the speed of the arm movement. The thumb
press was also timed and scaled in length proportionally to the arm movements,
suggesting that the thumb movement was made dependent on the state (velocity) of the
arm movement and not on absolute time since arm movement onset. Interestingly,
absolute timing was employed when the movements were separated in time during
training, that is_when_the thumb_preceded the arm movement by 100-500 ms. This
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suggests that training temporally overlapping movements produces a bias to encode the
movements of multiple effectors relative to their state, efficiently binding the effectors
together to achieve well-timed coordination. Indeed, it would be detrimental to actions
such as throwing a ball to a target to time arm and wrist movements based on inde-
pendent time estimates. Independent noise levels or drifts would quickly lead to a
decoupled motor state where the timing of muscle activations is disrupted, as in
cerebellar ataxia, and may lead to a state resembling movement decomposition (Bastian
et al. 1996; Timmann et al. 1999).

The impact of overlap between different motor activity states on their temporal
encoding echoes the findings on discrete (non-overlapping) versus continuous
(overlapping) timing tasks. Ivry and colleagues suggested a dichotomy of dedicated
versus emergent encoding of timing for discrete versus continuous movements,
respectively (Spencer et al. 2003; Ivry and Spencer 2004; Ivry and Schlerf 2008).
Temporal variability on continuous tasks characterized by smooth transitions
between different motor states (e.g. circle drawing) have been reported to be
uncorrelated with the temporal variability on discrete tasks characterized by
movement pauses in between boosts of motor activity (e.g. tapping) (Zelaznik et al.
2005). Moreover adjustment to timing perturbations is faster and more precise for
discrete as opposed to continuous movements (Elliott et al. 2009; Repp and
Steinman 2010; Studenka and Zelaznik 2011) and patient studies suggest that these
movements might rely on different neural substrates (Spencer et al. 2003; Spencer
and Ivry 2005). Yet, it is unlikely that movement kinematics alone determine
whether temporal encoding is dedicated versus emergent: As discussed above, even
continuous movements like smooth pursuit can be controlled using dedicated
timing mechanisms and independently of parameters such as movement velocity,
whenever the absolute timing predicts task success (Medina et al. 2005), or when a
periodic circle drawing tasks contains a salient auditory cue marking the completion
of a cycle (Zelaznik and Rosenbaum 2010; Braun Janzen et al. 2014).

When it comes to dissociating the spatial and temporal organization of sequential
motor skills, the focus has been on learning the organization of sequences of move-
ments rather than on learning the production of the constituent movements per se. Thus,
typically subjects are trained to sequence simple overlearned movements like finger
presses (Sakai et al. 2003; Ullen and Bengtsson 2003; O’Reilly et al. 2008; Kornysheva
et al. 2013; Kornysheva and Diedrichsen 2014). With training the production of
sequences becomes more accurate and is retrieved faster as evidenced by shorter
sequence duration or reaction times (RT) depending on the task employed. In addition,
a temporal grouping idiosyncratic to the subject or facilitated externally by the
sequence structure emerges, such that certain movements in the sequence become
closer in time than others creating so-called chunks. There is compelling evidence that
breaking up the sequence within chunks as opposed to between chunks when
reordering the sequence leads to losses in performance [for reviews see (Sakai et al.
2004)]. This suggests that a dedicated representation has been formed for each chunk of
movements in space which facilitates performance—similar to chunks in working
memory and cognitive control (Baddeley 2010). It has been hypothesized that this
temporal_grouping is.a sign_of a_skill becoming automatic and pairing the sequence
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with a different temporal structure would lead to losses in performance as this automatic
representation has not been formed (Hikosaka et al. 2002; Sakai et al. 2004).

Interestingly, there is evidence that while changing a chunking structure (ex-
ternally induced) can lead to performance losses, these are not as pronounced as
when performing a novel sequence (O’Reilly et al. 2008). This suggests some form
of independence for the spatial organization of sequences, on top of the integrated
spatio-temporal chunking structure. In contrast, many studies have shown that
retaining the timing while changing the spatial feature of movement sequences does
not provide any benefit as compared to a new sequence, which advocates that the
temporal structure of these sequences is invariably bound to their sequential
movements in space (Shin and Ivry 2002, 2003; O’Reilly et al. 2008).

This, however, has been challenged recently in a series of experiments
(Kornysheva et al. 2013; Kornysheva and Diedrichsen 2014). Here the experi-
mental test involved producing sequences following training of a single
spatio-temporal sequence of finger presses in a timed SRT task (Penhune and Steele
2012). These were either repeated in a block of several trials or new on every trial.
The results suggested that RT savings for a trained temporal feature paired with a
new sequence of finger presses (spatial feature) could only emerge once the new
spatial feature became more predictable through repetition (Fig. 2a, b). Note that
the advantage for the trained temporal features is relative to the control condition in
which the sequence was also repeated and the finger sequence became equally more
predictable with repetition. In contrast when the finger order was new on each trial
comparable to the random spatial sequence controls in the studies discussed above,
there was no advantage related to learning the timing of the sequence. It is unlikely
that this is an effect of whether these sequences were learned implicitly or had an
explicit component, as both the presence and the absence of temporal transfer were
found depending on the familiarity with the spatial feature.

More formally, drift diffusion modelling demonstrated that these results can be best
approximated using a multiplicative integration of independent spatial and temporal
sequence feature representations as follows such as Z,,;=2,+ V+ S+ (S*71),
rather then an additive integration (Z,,; =Z2,+V+ S+ T), or a combined
spatio-temporal ~ term  without ~a  separate  temporal  representation
Zw1=7Z,+V+ S+ C). Here Z is the selection layer corresponding to the five fin-
gers, Vis the visual stimulus in the serial reaction time task (SRTT), S the spatial, T the
temporal and C the combined representation in which the temporal sequence feature is
linked to a specific spatial feature (weights and noise terms are omitted for abbreviation
purposes). Essentially, this means that while effects of the spatial feature representation
act independently (additive integration) the temporal representation can only be
expressed when S > 0, in other words there is some knowledge of the spatial repre-
sentation. The difference between an integrated spatio-temporal versus an independent
temporal representation which is multiplicatively combined with the spatial one is
critical, as only the latter allows for temporal transfer which we could reliably observe
across experiments (Fig. 2b, c).
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Fig. 2 Evidence suggesting that spatial and temporal features of movement sequences are
represented independently. a Participants were trained on a specific spatio-temporal finger
sequence (green) and then tested on a novel sequence (black) or on sequences that retained either
the temporal (red) or spatial (blue) structure (Kornysheva et al. 2013; Kornysheva and Diedrichsen
2014). The numbers 1-5 in exemplary sequences correspond to the thumb, index, middle, ring and
little finger, respectively. b Reaction time advantages relative to a new sequence that are related to
a learned trained temporal feature can only be expressed when the spatial feature becomes more
predictable. Solid lines correspond to “trained”, “temporal” and “novel” conditions in which the
corresponding sequences are presented 10 times in a row, whereas the dashed lines correspond to
conditions where the trained temporal feature is paired with a new spatial feature on every trial
(dashed red) and compared to a sequence that changes both the temporal and the spatial feature on
every trial. Stars indicate significant differences across trials (Kornysheva et al. 2013). ¢ Reaction
time results indicate independent transfer of spatial and temporal features to test conditions
(Kornysheva and Diedrichsen 2014). d Separate, but partly overlapping spatial (blue) and temporal
(red) representations of finger sequences can be revealed bilaterally in premotor cortex (PM and
SMA) using multi-voxel pattern analysis. The two features are integrated in contralateral M1 only
(green). In a series of behavioural and fMRI experiments employing (Kornysheva and Diedrichsen
2014) e The premotor nucleus HVC in zebra finches reflects changes in the temporal feature of a
bird song (red line), such as a prolonged syllable, but not changes in its pitch feature (blue line).
Both types of changes were acquired through aversive conditional auditory feedback (adapted
from Ali et al. 2013)

A subsequent study investigated how independent and integrated spatial and
temporal representations are represented across the neocortex and the cerebellum
based on fine-grained local fMRI activity patterns (Kornysheva and Diedrichsen
2014). Despite the low resolution (fMRI voxels) these neural representations can be
probed due to tiny, but systematic spatial activity biases which occur with trial
repetition. Here instead of training one particular spatio-temporal sequence, subjects
were trained to produce nine spatio-temporal finger sequences, which were unique
combinations of three finger order (spatial feature) and temporal interval (temporal
feature) sequences. This factorial design in combination with multivariate pattern
analysis allowed to test for local voxel activity patterns related to the spatial feature
across sequences with different temporal features, and orthogonally, patterns related
to the temporal feature across different spatial features—feature transfer on the
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neural level. Moreover, subtracting out the main effects of independent spatial and
temporal features from the overall activity patterns isolated residual patterns, which,
if unique for each sequence, were taken as integrated neural representations.

The results revealed that fine-grained patterns in overlapping patches of the
lateral (dorsal and ventral) and medial (SMA) premotor cortex carried information
on the independent spatial as well as independent temporal patterns, whilst the only
region informative of an integrated spatio-temporal representation was the con-
tralateral primary motor cortex, the output stage of the neocortex (Fig. 2d). Thus, in
M1 each sequence may recruit a subpopulation of neurons that controls a particular
combination of spatiotemporal synergies (d’Avella et al. 2003). The latter cannot be
synergies of individual finger movements as each finger movement occurred in each
sequence, but particular spatio-temporal transitions within sequences. The same
principle, but now for spatial and temporal parameters would apply for the premotor
cortex—unique combinations of synergies capturing particular spatial
(timing-invariant) or temporal transitions.

The alternative is that the encoding observed in M1 is not sequential encoding
per se, but reflects the two spatial and temporal codes being combined nonlinearly.
Also while the force level for each finger matched well across sequences, it cannot
be completely excluded that tiny biases—thumb, index finger, etc., being more
active in one sequence than in another—may have contributed to the encoding to
some extent. Yet, this explanation is unlikely, since encoding in contralateral M1
correlated with sequence learning, but not with sequence classification accuracy
based on the force at each finger.

The presence of independent spatial and temporal codes, as well as integrated
representations suggests varied levels of abstraction from the actual motor response
implementation. To be transferable across different temporal profiles, the spatial
sequence in the premotor cortices has to lack specifics on the kinematics or
dynamics of each effector involved during sequence production, and may carry
more abstract information such as on sequential transitions between movements
(Tanji and Shima 1994). Conversely, the temporal feature representation is bound
to lack any information on the effectors and the dynamics such as force on each
finger to be transferable across different finger movement sequences.

Interestingly, a similar dissociation in the control of spatial (pitch) and temporal
sequences has been found in songbirds (Ali et al. 2013). Using aversive auditory
conditioning, the authors taught the animals to selectively modify temporal and
spectral features of their song, such as changing the length of a syllable, or its pitch
which requires a different configuration of muscle activations controlling the syrinx
(Fig. 2e). The basal ganglia analog was required for the modification of the spectral
properties (pitch), but not for changes in the temporal structure. By contrast, the
activity in HVC (an analog to the premotor cortex) reflected the temporal but not
spectral features of the song. This dissociation and therefore modularity of spatial
and temporal features in motor sequence control may thus be a universal property of
the CNS.

These findings resonate with the hypothesis by d’Avella and colleagues sug-
gesting that the control of movement may be modular during a variety of reaching
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movements (d’Avella 2017), as the variability of muscle activations recorded as
EMG signals can be explained by three types of components, so called muscle
synergies: (a) time-invariant spatial (S), (b) muscle-invariant temporal (T), (c) as
well as muscle-specific spatio-temporal synergies (ST). S are the activation weights
on each muscle required for the movement, which do not specify any change over
time, T are the temporal activation profiles which are shared across different
muscles and ST are activation waveforms for specific muscles which amount to an
idiosyncratic dynamical trajectory of individual muscles. These results suggest that
at the muscular level the underlying temporal features of movements are transfer-
able across different muscle synergies, respectively. Although explaining variability
of muscle activations by synergies does not provide direct evidence for the
encoding of these synergies in the CNS, these results allow for the possibility of
controllers somewhere in the corticoid-spinal pathway that impose this modular
regularity on motor output. A recent analysis of premotor and primary motor units
provided the first evidence that neural activity in the CNS can be explained by
EMG synergies (Overduin et al. 2015).

A modular representation enables a radical simplification of motor control
policies: Instead of controlling the spatio-temporal evolution of each individual
muscle throughout the movement, the CNS triggers spatial and temporal synergies
required for the skilled movement. Moreover, instead of encoding all combinations
of movements, the brain utilizes temporal and spatial synergies or profiles which
can be recombined flexibly into different combinations. If skilled movements did
not in principle require a dedicated representation of their temporal dimension and
were merely emergent from the encoding of the dynamics of the movement they are
performed with, such learned movements would be rigid with regard to their
temporal evolution beyond a simple speed up of slow down. It would entail that the
temporal dimension could not be utilized across different effectors and motor states.
Coming back to the musical example, the violinist would have to form an entirely
new representation whenever the temporal structure of a sequence is modified or
whenever a new sequence of movements is paired with a familiar temporal struc-
ture, which contradicts the findings above.

Computational Models and Neural Mechanisms
of Temporal Representation (“How”)

It has been hypothesized that a variety of neural structures are capable of encoding
the timing of movements, which corresponds to the widespread involvement of
these areas in explicit or implicit motor timing tasks—in particular the cerebellum,
the striatum and the lateral and medial premotor cortices (Lewis and Miall 2003;
Buhusi and Meck 2005; Ivry and Schlerf 2008; Buonomano and Laje 2010; Teki
et al. 2011; Laje and Buonomano 2013). This is surprising as these different parts of
the nervous system have diverse neural architectures, as well as physiological and
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computational constraints. Conversely, such diversity suggests that these systems
are unlikely to be redundant with respect to skilled motor timing, specializing on a
particular neural computation which determines or co-varies with motor timing.
Below I will present a hypothesis of how such parallel processes may operate and
interact to enable precise motor timing based on results from computational mod-
elling and current neuroscientific evidence.

The cerebellar cortex has been one of the first regions hypothesized in motor and
more generally sub-seconds timing (Braitenberg 1967). In stark contrast to the
neocortex, the architecture of the cerebellar circuitry is remarkably uniform across
the different parts of the cerebellum (with the exception of the floccular cortex) with
the main difference between regions being the origins of their inputs and the targets
of their outputs. The circuitry is designed to integrate only two types of inputs from
the rest of the nervous system, which converge in the cerebellum: The mossy fibre
pathway that relays information from the cortex (via the pons), as well as the
periphery (via the brainstem) and the climbing fibre pathway that carries signals
from the inferior olive in the brainstem. The cerebellar output is sent to the neo-
cortex via the thalamus or to the periphery via brainstem nuclei, and has been
shown to form reciprocal multisynaptic cortico-cerebellar loops (Kelly and Strick
2003).

While the deep cerebellar nuclei (DCN) receive excitatory input directly via
mossy and climbing fibre collaterals, the anatomical connections of the two fibre
systems to the Purkinje cell (PC) layer is at the core of cerebellar architecture:
Unlike to the DCN, the mossy fibre to PC projection is indirect, going through a
layer of granule cells, which remarkably constitute the majority of neurons in the
brain. Granule cells relay this information by parallel fibres that run transversally
through flattened and orthogonally oriented dendritic trees of PCs with some of
which they form direct excitatory connection on the way, and inhibit them indi-
rectly via the inhibitory interneurons. Remarkably, Purkinje cells have a baseline
firing rate of 50-100, sometimes up to 200 Hz (Zeeuw et al. 2011; Zhou et al.
2014), and inhibitory projections to the DCN as their only output (GABA). They
act as a constant break on the DCN, which activity is released only when the PCs
exhibit a firing pause that in turn disinhibits the DCN, the sole output of the
cerebellum.

The granular layer has been hypothesized to act like a giant “filter”” of the mossy
fibre input (Dean et al. 2009, 2013) redistributing the mossy fibre inputs across
granule cells (divergence), but at the same time mixing inputs from different
channels—sensory and motor at the single cell level (Huang et al. 2013; Ishikawa
et al. 2015). In classical eyeblink conditioning, which acts as a model for the
learning of timed motor responses, time varying activity in a subset of granule cells
activated by the conditioning stimulus (CS) has been hypothesized to produce a
temporal code at the parallel fibre to PC synapses (Medina and Mauk 2000). This
synaptic input to the PC can act as a clock, as each unique state of the synaptic input
after a stimulus corresponds to the passage of time following the CS onset. In
contrast, learning of the precisely time motor response (eyeblink) takes place based
on.an aversive stimulus, such as a short air-puff directed into the eye (unconditioned
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stimulus, US). The latter is transmitted by the climbing fibre system, and leads to
the depression of those parallel fibre to PC synapses active just before the time of
the aversive stimulus, partly mediated by plasticity in interneurons inhibiting the PC
(Medina and Mauk 2000; Heiney et al. 2014). This eventually leads to decreased
PC simple spike cell firing during the interval between the two stimuli with the most
pronounced reduction timed just before the conditioned response (CR), the latter
being initiated via the disinhibition of the DCN (Jirenhed et al. 2007; Ten Brinke
et al. 2015). It has been repeatedly shown that the intact cerebellar cortex is nec-
essary for a precisely timed response, as the intact DCN alone produces a
short-latency response without any temporal features necessary for the task (Perrett
et al. 1993; Koekkoek et al. 2003). Importantly, this notion advocates a distributed
motor learning architecture across the cerebellum (Gao et al. 2012), and argues for a
special role of the cerebellar cortex in motor timing.

More recently it has been proposed that the temporal profile of the response can
be acquired locally in the PC (Johansson et al. 2014). Specifically, pairing a CS
consisting of a direct stimulation of the parallel fibres (circumventing the granular
cell layer) with a US consisting of direct climbing fibre stimulation led to a Purkinje
cell CR that was adaptively timed. The cell reached maximum suppression of
75 ms before the onset of the US across different CS-US intervals. Importantly,
even when blocking inhibition from inhibitory interneurons that are also innervated
by parallel fibres and could have had an effect on the PC response, the learned
timing was preserved. This led the authors to conclude that the encoding of the
precisely timed response is located in the PC at the molecular level. Specifically,
blocking mGIuR7 receptor has been shown to disrupt timing in the direct stimu-
lation paradigm above (Johansson et al. 2015). While the exact mechanism of
molecular timing is still unknown, it has been hypothesized that the CS may initiate
a predictable biochemical cascade while the US onset induces interval-specific
changes to this cascade. This could take place in form of a selection of different
molecular components with particular properties with regard to the duration of ion
channel open states, so that the time course of the PC simple spike depression
matches the CS-US interval.

Regardless of whether the timing mechanism is distributed or localized, the parts
of the cerebellar cortex involved in classical conditioning project to a specific target
effector in the periphery and cannot be expected to be transferable across different
effectors, spatial configurations or motor states. For instance, the cerebellar cortical
projection to the anterior interpositus of the DCN nucleus involved in eyeblink
conditioning innervates periorbital muscles of the eye via the brain stem (Ten
Brinke et al. 2015). However, a more abstract representation of timing for
spatio-temporal movements is still conceivable in those regions of the cerebellum
that project to the premotor and prefrontal cortices via the dentate nucleus (Kelly
and Strick 2003), albeit only if they receive climbing fibre stimulation at the time of
the US during learning which has not been investigated systematically so far.

Another timing mechanism has been attributed to the basal ganglia, the striatal
beat frequency model (Matell et al. 2004; Buhusi and Meck 2005). Unlike the
cerebellar_timing _mechanisms,_described in this chapter, the latter is relevant for
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interval timing that involves intervals of seconds-to-minutes. While even the lower
range may appear too long to be relevant for motor timing many skilled movements
like verbal utterances, musical and dance sequences, as well as the typing Morse
code messages involve sequences of movements that unfold over the timescale of
several seconds to tens of seconds. The basal ganglia is organized in cortico-basal
ganglia-thalamo-cortical loops with the majority of the excitatory input coming
from the cortex and then sent out to direct and indirect pathways of the basal
ganglia which excite and inhibit the cortex, respectively, via the thalamus (Graybiel
1998). Here each medium spiny neuron in the striatum receives up to 30.000
separate axons from the cortex. Thus, it has been proposed that through learning the
medium spiny neurons in the striatum act as coincidence detectors of neural
oscillations that operate at different frequencies in the neocortex (Buhusi and Meck
2005). With trial onset the phase of the oscillations is reset (“start-gun”). During
learning a reward signal at the end of the interval to be trained is conveyed by
dopaminergic input from the substantia nigra pars compacta and the ventral
tegmental area. Experience-dependent changes in cortico-striatal transmission (both
LTP and LTD) lead to a ramp of striatal activity with a peak at the time of the
expected reward, i.e. at the end of the interval. Accordingly, following training
striatal neurons may be capable of detecting the unique coincidence of phases of the
neural oscillators that project to these neurons, respectively. Interestingly such
adaptively timed ramping activity has also been observed in the neocortex, such as
in a motor synchronization-continuation task involving isochronous intervals per-
formed at different speeds in the monkey supplementary motor area
(SMA) (Merchant et al. 2013) and an interval reproduction task in the parietal
cortex (Jazayeri and Shadlen 2015). Although there has been no direct experimental
evidence from studies involving sub-second intervals, it is likely that such ramps
reflect the striatal activity via the direct basal ganglia thalamic route to the neo-
cortex. Indeed, imaging, lesion and pharmacological studies have confirmed the
involvement of the striatum in interval timing (for a review cf. Buhusi and Meck
2005).

Finally, the neocortex could be regarded as most closely related to models
involving random recurrent networks (Thomson and Bannister 2003; Buonomano
and Laje 2010). Recent concurrent multiunit recordings from premotor and primary
motor cortices suggest that the trajectory of a movement is not represented in terms
of its features such as position, velocity, direction, force and timing as suggested
before, but rather as a compound of variables correlated leading to the performed
trajectory in space (Churchland et al. 2006; Shenoy et al. 2012; Kaufman et al.
2015). Here the timing is merely an emergent feature of the evolution of the
multiunit activity which controls the spatial movement trajectory. Accordingly, a
model of randomly connected networks can be trained to produce skilled sequential
movements and have perfectly reproducible temporal dynamics without any dedi-
cated encoding of the temporal dimension in the model (Laje and Buonomano
2013). Such a network of interconnected units can be trained to represent the
spatio-temporal evolution of a trajectory as complex as handwriting (in
two-dimensional space).
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Central to the function of this model is a random recurrent network of inter-
connected firing-rate nodes with a multiunit firing rate that learn to follow a par-
ticular innate trajectory depending on the input trigger. Learning consists of the
reduction of the variability in this innate trajectory in space by adjusting the net-
work weights enabling the firing rate activity to be robust to noise and perturba-
tions, so that the trajectory can return to a carved out path. This network activity can
be read out continuously by an output module that maps its multiunit state into
external variables like an x and y position for complex motor trajectories and could
in principle also guide movements in muscle space. The timing of this movement is
also reliable after training, such that a certain position in space clusters equally
tightly in time. This is despite the temporal features of the movement not having a
dedicated representation, but emerging from the dynamics of the trajectory dedi-
cated to the spatial position of the movement.

While the dynamical systems view focuses on the representation of a movement
in space with timing being an emergent property of the trajectory, Buonomano and
colleagues proposed that the dynamical trajectories produced by random recurrent
networks could also be utilized to encode discrete timing of movements
(Buonomano and Laje 2010). These networks could be trained to control a simple
timing task, producing a phasic pulse after a specific interval (activity in
one-dimensional space y), analogous to a discrete button press in a finger tapping
task or eyelid closure in eyeblink conditioning. Computationally the mechanisms of
such dedicated temporal representations are equivalent to the encoding of the
continuous spatio-temporal trajectory. What is crucial here is the mapping of the
network output to a readout unit controlling a motor response. This mapping
determines whether the timing is a by-product of the spatial trajectory or whether
the network activity which is consolidated after training essentially acts as a pop-
ulation clock, triggering a discrete response once the network activity reaches a
particular state. The latter can be extrapolated to sequential representations of finger
movement sequences. Thus, from the perspective of the neocortex discrete event
timing and continuous emergent timing which have been tied to distinct neural
substrates as discussed earlier (cf. Spencer et al. 2003) could in principle be
encoded in the same way.

This flexibility of temporal encoding in the networks resembling the neocortex
resonates with the imaging results showing independent temporal and spatial fea-
ture encoding in the premotor cortices versus integrated spatio-temporal encoding
in contralateral primary motor cortex (Kornysheva and Diedrichsen 2014;
Diedrichsen and Kornysheva 2015). Within the dynamical systems framework, this
modularity would be related to the activation of several recurrent neocortical net-
works that are utilized to encode integrated spatio-temporal encoding in M1 and
dedicated temporal encoding in premotor regions, the latter enabling the flexibility
of the response independently of a spatial motor features, analogous to the temporal
transfer observed behaviourally (Fig. 2a—d). In contrast, it is much less straight-
forward how such recurrent networks could be mapped to encode the spatial feature
of sequences (e.g. finger order) independently of their exact temporal feature. If the
encoding of movement sequences, draws_on consolidated multiunit trajectories of
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randomly recurrent units, the precise changes in multiunit space would be ignored,
such that a certain cascade of states would be mapped onto the same spatial state
(configuration of finger activations). The temporal evolution would then be speci-
fied at the stage when both are combined either by acting on integrated
spatio-temporal M1 representations (Kornysheva and Diedrichsen 2014) or
downstream in the case of direct cortico-spinal projections from the premotor
cortex.

How do these regions interact with each other to achieve precise motor timing of
skilled movements? Here only projections with a short latency (“online”) trans-
duction up to tens of milliseconds can be considered to exhibit control at time scales
relevant to online motor control.

For a long time it has been assumed that the basal ganglia and the cerebellum
operate in parallel to each other at the subcortical level, having separate thalamic
relays to the neocortex (Bostan et al. 2013). However, in rodents (Ichinohe et al.
2000) and more recently in primates (Hoshi et al. 2005; Bostan et al. 2010) disy-
naptic connections from the DCN to the striatum have been established. The relay is
located in the intralaminar nuclei of the thalamus which contain projections to the
striatum. Recently, it has been determined that the propagation speed between DCN
and the dorsolateral striatum can be as low as 10 ms (Chen et al. 2014). This
suggests a rapid transmission of cerebellar output to striatal. High frequency and
well-timed bursts in DCN neurons can modulate activity at the entry stage of the
basal ganglia, thereby coordinating cerebellar output with the basal ganglia com-
putations in real time. Interestingly when stimulation of the DCN was combined
with concurrent cortico-striatal input, the cortico-striatal activation was potentiated
(Chen et al. 2014). The cerebellar output signals which carry a high temporal
resolution profile of a signal are therefore impacting the neocortical input at the
level of the ramping activity of medium spiny neurons. At the same time the
subthalamic nucleus to which striatal neurons project via the indirect pathway
innervates the cerebellum via the pontine nuclei. The propagation speed of this
connection is currently unknown.

As with the basal ganglia, the premotor cortex forms reciprocal disynaptic
connections with the cerebellum (Kelly and Strick 2003). The DCN project to the
neocortex via the ventrolateral nucleus of the thalamus and affect not only supra-
granular layers, but also directly layer V in M1 as shown by optogenetic stimulation
of the cerebellar Purkinje cells (Proville et al. 2014). Importantly, the DCN inhi-
bition is followed by a rebound excitation following the offset of Purkinje cell
stimulation at around 60ms and in M1 40ms later. At the same time this study
revealed a short-latency transmission between M1/S1 and the lateral cerebellar
cortex, with onsets of Purkinje cell frequency modulation as early as 10ms after
neocortical stimulation. Finally, non-invasive research in humans has shown that
the latency of cerebellar inhibition of the cortex as measured by M1 triggered MEP
is highest at 5 ms delay (Ugawa et al. 1991), confirming a rapid transmission
between the cerebellum and the neocortex. In other words, it is likely that the (pre-)
motor cortical networks relevant for temporal encoding receive a precisely timed
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(high resolution) signal from the cerebellum while the latter is modulated by
neocortical input, with these interactions unfolding almost instantaneously.

Why do we need parallel timers in our brain operating in parallel and what is
their specific contribution? A schematic model based on the current review is
presented in Fig. 3 (cf. caption for details). At the current stage, any answers to this
question will remain speculative. Most of the invasive electrophysiological
recordings that could provide direct evidence for this report only from one region at
a time. Yet, in an intact brain it is impossible to disentangle whether the activities
reported relay the input of interconnected regions, or whether this activity originates
and is causally involved in the production of well-timed movements. Even lesion
studies (temporal inactivation, TMS, patients, etc.) are of limited use, as they cause
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Fig. 3 Temporal encoding for skilled spatiotemporal sequence production. a Modular represen-
tation of temporal (red dots, a longer and a shorter interval) and spatial (blue dots) sequence
features. The temporal representation modulates the signal originating from two different spatial
representations (black broken arrows) (Kornysheva et al. 2013). This allows two different
sequences S1 and S2 to utilize the same learned temporal structure flexibly (adapted from
Diedrichsen and Kornysheva 2015). b The premotor cortex, the cerebellar cortex and the striatum
utilize different computational mechanisms that can be harnessed to learn and control motor timing
—either independently of the movement in space as shown here or in an integrated spatio-temporal
fashion (see main text). These regions are interconnected with each other by short-latency circuits
via the thalamus and the pons, respectively. The following model of motor timing for skilled
movement sequences is proposed in the current review: The neocortex produces sustained
dynamic activity in a population of interconnected neurons which can be utilized for the duration
of a whole sequence of movements (Buonomano and Laje 2010). This multi-unit activity is read
out by the MSN in the striatum based on oscillation phase detection and chunked into a series of
ramps that mark the interval between movement onsets or between an external stimulus and a
motor response (Buhusi and Meck 2005). Crucially, the cortical and striatal activity is fed into the
cerebellum, providing a sequential context signal for each movement unfolding in the seconds time
range. This activity is transformed by the cerebellar cortex into a precise high temporal resolution
output on a sub-seconds scale in the deep cerebellar nuclei for each sequence component. Through
disynaptic projections, the latter modulates both the ramps in the striatum and the population
clocks in the neocortex to achieve a more precisely timed representation of the sequence.
Abbreviations: il—intralaminar; MSN—medium spiny neurons; S—sequence; T—time point; Tha
—Thalamus; va—ventroanterior; vl-—ventrolateral
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reorganization in the network, that unless recorded, remains hidden and may impact
conclusions with regard to behaviour. Short-lived local inactivation though mus-
cimol, optogenetic stimulation (animal models) and transcranial magnetic stimu-
lation (humans) whilst recording from the site to which the region that is disrupted
projects are likely to provide more conclusive answers to this question. For
instance, to assess the individual contribution of cortical and subcortical sites to
learned timing, a pioneering study by Mauk and colleagues has been conducted to
decompose the contributions of the neocortex versus the cerebellar nuclei to trace
eye blink conditioning (Siegel and Mauk 2013). This task is known to rely not only
on the cerebellum (in contrast to delay eyeblink conditioning), but also on the
cortex and the hippocampus. Here it could be demonstrated that ramping activity
observed in prefrontal cells, as well as the well-timed conditioned motor response is
abolished when cerebellar output is inhibited, whereas the sustained activity during
the duration of the CS remained intact. In the future similar studies need to be
designed to directly probe the contribution of the premotor cortex, the striatum and
the cerebellar cortex to skilled motor timing.

Conclusions/Take Home Message

Precise motor timing of spatio-temporal skills is crucial for a variety of skilled
movements. During the past decade there have been contradictory results with
regard to how timing for spatio-temporal motor skills is represented in the brain.
The encoding of motor timing is achieved either directly by measuring time
intervals from movement onset or an external stimulus (dedicated timing) or
indirectly via state-dependent encoding (emergent timing). Which mode is chosen
depends on the characteristics of the motor task, such as the correlation of the
temporal target with a state-dependent variable (e.g. position or velocity), the
presence of temporal overlap across effectors requiring their coordination in time
and the reliability of temporal versus state-dependent encoding for task success.
The ability to transfer temporal features across different motor configurations in
space indicate a modular representations of these features for the control of skilled
motor sequences which can be found in the premotor as opposed to primary motor
cortices. The idea that there is a localizable universal neural clock in the CNS,
which is utilized across different domains, perceptual and motor, is an unlikely
scenario. Partly this is evidenced by the fact that timing functions have been
attributed to different areas across the brain. Instead, different neural mechanisms
that operate in parallel—dynamical systems (random recurrent network), oscillation
phase detection (ramps), patterned input and molecular delays at the cell level—
constitute representations in neocortical motor areas, the striatum and the cerebellar
cortex, respectively. These neural representations interact with each other in
short-latency loops to produce well-timed behaviour.
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Predictability and Robustness
in the Manipulation of Dynamically
Complex Objects

Dagmar Sternad and Christopher J. Hasson

Abstract Manipulation of complex objects and tools is a hallmark of many
activities of daily living, but how the human neuromotor control system interacts
with such objects is not well understood. Even the seemingly simple task of
transporting a cup of coffee without spilling creates complex interaction forces that
humans need to compensate for. Predicting the behavior of an underactuated object
with nonlinear fluid dynamics based on an internal model appears daunting. Hence,
this research tests the hypothesis that humans learn strategies that make interactions
predictable and robust to inaccuracies in neural representations of object dynamics.
The task of moving a cup of coffee is modeled with a cart-and-pendulum system
that is rendered in a virtual environment, where subjects interact with a virtual cup
with a rolling ball inside using a robotic manipulandum. To gain insight into human
control strategies, we operationalize predictability and robustness to permit quan-
titative theory-based assessment. Predictability is quantified by the mutual infor-
mation between the applied force and the object dynamics; robustness is quantified
by the energy margin away from failure. Three studies are reviewed that show how
with practice subjects develop movement strategies that are predictable and robust.
Alternative criteria, common for free movement, such as maximization of
smoothness and minimization of force, do not account for the observed data. As
manual dexterity is compromised in many individuals with neurological disorders,
the experimental paradigm and its analyses are a promising platform to gain
insights into neurological diseases, such as dystonia and multiple sclerosis, as well
as healthy aging.
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Introduction

Everyday life is full of actions that involve interaction with objects. Grasping and
lifting a book involves manipulation of a free rigid object; turning a key in a
keyhole involves moving a rigid object against a kinematic constraint. Functional
interaction with objects—tool use—is ubiquitous in activities of daily living and the
basis for our evolutionary advantage. Tools extend and augment fundamental
human capabilities. Surprisingly, how humans interactively control objects or tools
is still little understood. Manipulation requires sensing the mechanics and the
geometry of the object and adjusting one’s movements and forces accordingly to
exploit object properties. Manipulation becomes particularly intriguing when the
objects have internal degrees of freedom that add complex dynamics to the inter-
action. An exotic example is cracking a whip, where the flexible whip creates
challenging dynamics (infinitely many degrees of freedom) that the hand has to
interact with (Bernstein et al. 1958; Goriely and McMillen 2002; Hogan and
Sternad 2012). A more mundane example is leading a cup of coffee to one’s mouth
to drink: the transporting hand applies a force not only to the cup, but also indirectly
to the liquid, which in turn acts back onto the hand. These continuous forces require
sensitive adjustments to avoid spilling the coffee (Hasson et al. 2012a; Mayer and
Krechetnikov 2012; Hasson and Sternad 2014; Sauret et al. 2015). Humans are
strikingly adept at interacting with a large variety of such objects, but most studies
on object manipulation have been confined to either multi-digit grasping of a static
object or grip forces needed for transporting solid objects (Flanagan et al. 1993;
Flanagan and Wing 1997; Santello et al. 1998; Gao et al. 2005; Fu and Santello
2014). This chapter will focus on physical interactions with complex objects that
are largely unchartered territory in motor neuroscience to date.

Over the last two decades motor neuroscience has made advances in under-
standing the control of simple movements, for example straight-line reaches in the
horizontal plane including adaptation to external force fields or visual perturbations.
This research has shed light on significant aspects of adaptation and control, such as
error correction mechanisms and internal models (Shadmehr and Mussa-Ivaldi
1994; Scheidt et al. 2001). This paradigm has continued the long tradition of motor
neuroscience examining elementary behaviors under strict experimental control.
Seminal paradigms range from single-joint wrist movements in primates (Evarts
1968), to the speed-accuracy paradigm (Fitts 1954), to today’s center-out reaching
task for human and primate studies (Kalaska 2009). While these paradigms render
manageable data for analysis and modeling, they are far removed from the richness
of everyday actions and interactions. Unfortunately it is difficult, if not impossible,
to.extrapolate insights to.more complex movements. For example, when extending
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multi-joint movements from 2D to 3D, non-commutative finite rotations introduce
entirely new problems (Zatsiorsky 1998; Charles and Hogan 2011). Further and
important for this line of study, physical contact with objects introduces bidirec-
tional forces that pose a control challenge that is completely absent in free move-
ments (Hogan 1985). Different from the sequential flow of information processing,
physical interactions are fundamentally bidirectional—each system affects the other
with mutual causality, an observation first expressed in Newton’s third law.

Previous Research on Complex Object Manipulation

Previous research on human control of dynamically complex objects has adopted a
variety of theoretical perspectives that, as a whole, still present a rather discon-
nected picture. One line of studies examined balancing a pole, the classic control
theoretical problem of stabilizing an inherently unstable system. Different control
mechanisms were proposed, ranging from intermittent to continuous, predictive
control, with forward or inverse models (Mehta and Schaal 2002; Gawthrop et al.
2013; Insperger et al. 2013). Nonlinear time-series analysis of the hand trajectory
has probed the role of noise and delays to distinguish between continuous versus
intermittent control (Cluff et al. 2009; Milton 2011; Milton et al. 2013) or the
perceptual information used to stabilize the pole (Foo et al. 2000). Valero-Cuevas
and colleagues examined the manual compression of a spring, modeling this
dynamical system to include a subcritical pitchfork bifurcation to account for
buckling (Venkadesan et al. 2007). Other studies have focused on the role of visual
and haptic information to learn complex manipulation (Huang et al. 2002, 2007;
Danion et al. 2012). Yet other research examined the displacement of a linear
mass-spring object and proposed optimization criteria, such as generalized kine-
matic smoothness (Dingwell et al. 2004), accuracy and effort (Nagengast et al.
2009), and minimum acceleration with constraints on the center of mass (Leib and
Karniel 2012). While interesting insights have been gained, most studies implicitly
or explicitly assume that the human has, or has to learn an internal model of the
manipulated object. As already hinted above, this may be daunting.

Hypothesis 1: Predictability

When interacting with complex objects, instantaneous action and reaction is critical.
Control models for artificial systems have posited internal models and inverse
dynamics control plus feedback control, as they are largely devoid of long feedback
delays and with relatively low levels of noise (Flanagan et al. 1999, 2003; Kawato
1999; Takahashi et al. 2001). In contrast, in humans feedback-based corrective control
is virtually irrelevant due to trans-cortical or trans-cerebellar loop delays on the order of
100, ms_or_more, which_requires_exact_extrapolation from current state estimates
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(Pruszynski et al. 2011). This is difficult as variability and noise in the human system is
high, with an approximate precision in timing of 9 ms (Faisal et al. 2008; Cohen and
Sternad 2012). Instead, intrinsic musculo-skeletal properties augmented by spinal
reflexes deliver essentially instantaneous reaction and can provide stabilization to
counteract noise or instability (Colgate and Hogan 1988; Burdet et al. 2001; Franklin
et al. 2003; Selen et al. 2009; Lee et al. 2014). While mechanical impedance is
essential, dexterous control in the presence of delays nevertheless requires one to
anticipate, preempt, and exploit the forces and motions of an object. Yet, prediction for
continuous nonlinear objects with chaotic, i.e. unpredictable, behavior is challenging or
impossible, even for artificial systems with short delays and low noise. Therefore, rather
than expending the neural resources to learn a complex dynamics model, we suggest an
alternative hypothesis: humans make the interactions with objects more predictable.
This can be achieved by simplifying the interactive dynamics via linearization or
avoidance of chaotic regimes.

Hypothesis 2: Robustness

A precise internal dynamic model with complex nonlinear dynamics is difficult, if
not impossible to learn. On the other hand, such complex models may not be
necessary. For example, humans can proficiently control an automobile without
knowing its full dynamical model or even understanding how the various
mechanical components of a car work. To cope with such situations, the nervous
system should select movement strategies that are robust to modeling errors. The
branch of control theory called robust control is devoted to solving this problem,
i.e. designing controllers that have good performance and stability in spite of
modeling errors (Zhou and Doyle 1998). Note that such a controller may not have
the same level of performance as one that has access to a perfect dynamics model,
but choosing a suboptimal movement strategy, i.e. a “good enough” solution (Loeb
2012) may be an acceptable trade-off for increased robustness to modeling errors.
Therefore, we hypothesize that rather than expending the neural resources to learn a
complex dynamics model, humans learn a simpler model and select a robust control
strategy that offers greater safety margins against failure.

The Model Task: Moving a Cup of Coffee

To test the two hypotheses—humans select movement strategies that make inter-
actions with complex objects predictable and robust—an appropriate test bed is
needed. Transporting a cup of coffee is a good candidate as the cup filled with liquid
has complex dynamics and there are clear consequences for failure, i.e. spilled
coffee. However, transporting a cup with sloshing coffee is a complex problem in
fluid dynamics (Mayer and Krechetnikov. 2012; Sauret et al. 2015). Hence, the task
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pendulum path, the pendulum bob is the ball. d Virtual implementation with robot arm and visual and
haptic interface. e The display with start and end box targets. The schematic below visualizes the
applied force as arrows in accelerating and decelerating directions. Figure modified from Nasseroleslami
et al. (2014) with permission under Creative Commons Attribution (CC BY) license

was simplified to that of moving a cup with a ball rolling inside, representing the
complex dynamics of the coffee [Fig. 1a, b; (Hasson et al. 2012a)]. Implemented in
a virtual environment the cup was visualized as an arc in 2D and modeled as a point
mass moving along a horizontal axis. The ball’s motion was modeled by a sus-
pended pendulum; the arc of the cup corresponded to the ball’s semi-circular path
(Fig. 1c). This model system was implemented in a virtual environment, where
subjects exert forces on the virtual cup via a robotic manipulandum (Fig. 1d shows
the screen display and Fig. le (bottom panel) shows a movement of the cup and
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ball with the applied forces shown at different time points). Importantly, movements
of the cup also accelerate the ball, which in turn acts back on the hand. Despite
these simplifications, the model system retained essential elements of complexity: it
is nonlinear and creates complex interaction forces between hand and object.

In this simplification, the equations of the cup-and-ball system are identical to the
well-known cart-and-pendulum problem (Hinrichsen and Pritchard 2005; Ogata 2010).
The cup is the cart with a point mass M that moves horizontally; the pendulum
comprises a point mass m (the ball) attached to a mass-less rod of length ¢ with one
angular degree of freedom 6. Subjects control the ball indirectly by applying forces
to the cup, and the ball can “escape”, i.e. it can be lost from the cup when the
angular distance to the rim is exceeded. The hand moving the cup is represented by
an external applied horizontal force F5. The equations of the system dynamics are:

(m—i—M)\‘x:mf(écosH—&-@zsinH)+FA (1)
00 = \‘xcosH—gsinH

where 0, 0 and 0 are the ball’s angular position, velocity, and acceleration; x, x and

‘x are the cart/cup’s position, velocity and acceleration; g is gravitational acceler-
ation; damping to pendulum and cart motion can also be added if desired.

To implement this cup-and-ball system in a virtual environment, the cart and the
pendulum rod were hidden, but the pendulum bob (the ball) remained visible
(Fig. le). Subjects manipulate the virtual cup-and-ball system via a robotic arm,
which also exerts forces from the virtual object onto the hand [HapticMaster, Motek
(van der Linde and Lammertse 2003)]. Using admittance control, the HapticMaster
has three controllable degrees of freedom, but was constrained to motion on a

horizontal line for the experiments. The pendulum’s 6 and 0 were computed using a
4th-order Runge-Kutta-integrator, and the force of the ball on the cup Fp,; was

computed based on Eq. 1: Fpy = mf (0 cos 0+ 0% sin 9). This force, combined

with any forces exerted by a human Fa, accelerated the virtual mass (m + M). The

robot motors moved the manipulandum according to *y and the visual display was
updated. For more details see (Hasson et al. 2012a).

This formalization and its virtual implementation has several advantages. (1) The
focus is on the interaction forces between the hand and the object. Confining the
physical interaction to a single “interaction port” via the robot handle avoids the
complexity of grasp formation (Santello and Soechting 2000; Nowak and Hermsdorfer
2003). (2) Compared to real objects that have dozens of modes, this formalization
reduces the object to two modes that facilitate analytical treatment (Hasson et al.
2012b). (3) The virtual implementation enables versatile manipulation of task param-
eters, including linear and nonlinear aspects. (4) The task involves “skill” and requires
practice to arrive at smooth and stable execution. (5) The virtual implementation of the
task is equivalent to the dynamic model. Hence, the measured human kinematics and
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kinetics lends itself to novel mathematical analyses to assess how humans sense and
exploit the object’s dynamic properties. In sum, the task has manageable but sufficient
richness with multiple routes to increment complexity.

Predictable and Unpredictable Interactions—Chaos

Most studies involving object manipulation have used linear systems, such as
mass-springs (Dingwell et al. 2002; Svinin et al. 2006; Danion et al. 2012). By defi-
nition, such systems display predictable behavior. For example, if one were to oscillate
a linear mass spring with the goal of attaining a given oscillation, the execution
variables, the amplitude A and frequency f of the cup oscillation relate linearly to the
applied forces and the resulting motion of the system: If the system is sinusoidally
forced at 1 Hz, it will oscillate sinusoidally at 1 Hz. However, with a nonlinear
system, such as the cup-and-ball, this mapping becomes non-trivial: the same
forcing input may cause the system to oscillate at an array of frequencies with
unpredictable and chaotic behavior.

To illustrate this chaotic behavior in the cup-and-ball system, we applied inverse
dynamics to obtain the required force F'5 for a given oscillatory cup motion, specified
by the scalar execution variables cup amplitude A and cup frequency f, with initial
ball angle 6, and ball velocity 0. Shown in Fig. 2 are two simulated examples with
the same sinusoidal cup movement x. The only difference is in the initial angle of
the ball 0y, with 9() set to zero. In one case (6 = 1.0rad), the force required to
produce this motion x is periodic and predictable. In the other case (6y = 0.4 rad),
the force required to produce the same cup motion shows highly irregular fluctu-
ations. To characterize the pattern of force profiles with respect to the cup dynamics,
Fa was strobed at every peak of the cup position x. The marginal distributions of
strobed force values are plotted as a function of ball angle 6y in the bottom panel
(Fig. 2). This input-output relation reveals bifurcations with a pattern similar to the
period-doubling behavior of chaotic systems. This feature has important implica-
tions for control: small changes in initial states can dramatically change the
long-term behavior and lead to unpredictable solutions.

Quantifying Predictability

We hypothesize that subjects seek solutions with predictable object behavior
(Hypothesis 1). To quantitatively test this hypothesis, predictability must be oper-
ationalized. One possible measure is the mutual information (MI) between the
applied force and the motion of the object, which characterizes the long-term
predictability of the object’s dynamics (Cover and Thomas 2006; Nasseroleslami
et al. 2014). Ml is a nonlinear correlation measure defined between two probability
density distributions of two random variables and quantifies the information shared
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between the two. MI is calculated between Fa and the phase of the ball ¢. This
phase was calculated in phase space, spanned by ball angle and velocity:

_ p((PaFA)
MI(@,Fa) = //p((PvFA)IOgemd(/’dFA (2)
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where p(.) denotes a probability density function. MI can also be calculated for the
phase of the cup. MI presents a scalar measure of the performer’s strategy that can
be calculated for all amplitudes and frequencies of the cup and all initial conditions
of the ball. MI can be summarized for each point of the 4D space of execution

variables: A, f, 6y, and 0.

Experimental Insights

Our recent study provided evidence that subjects increase the predictability of
object dynamics with practice and favor predictable solutions over those that
minimize expended force and smoothness, criteria that are widely supported criteria
for free movements (Nasseroleslami et al. 2014). In this study, subjects (n = 8)
oscillated the virtual cup between two targets with a robotic manipulandum, paced
by a metronome at 1 Hz for 50 trials, each lasting 45 s. They were free to choose
their movement amplitude and relative phase between the ball and cup.

The cup and ball oscillations were analyzed to determine how choices of
movement amplitude and relative phase related to three result variables or costs:
predictability, exerted force, and movement smoothness (Fig. 3). Figure 3a shows
the result space for mutual information; lighter shading indicates that combinations
of cup amplitude and ball angle render higher mutual information (higher pre-
dictability). The large point indicates the strategy with the highest mutual infor-
mation. To compare potential alternative explanations, two other result measures, or
commonly used costs, were derived for the same model: minimum force and
maximum smoothness. The expended force was calculated by the square of the
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Fig. 3 Result spaces that combine result variables or costs in the space spanned by the execution
variables initial ball angle, cup amplitude, frequency (fixed at 1 Hz), and initial ball velocity (set to
zero). a Mutual information. b Mean squared force (log transformed). ¢ Mean squared jerk of the
ball motion (normalized for amplitude); the large point in each graph indicates the location of
maximum cost. Importantly, the minimum/maximum values are located in different parts of the
map, providing different predictions. Figure modified from Nasseroleslami et al. (2014) with
permission under Creative Commons Attribution (CC BY) license
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mean integral over Fa over the course of the trial, mean squared force MSF.
Figure 3B shows the resulting pattern of force for the same space of execution
variables; lighter shading refers to strategies requiring less force. The point high-
lights that the minimum force solution is obtained at the smallest allowable cup
amplitudes. Lastly, smoothness or jerk was evaluated of the cup trajectory for each
of the strategies defined in the execution space. Figure 3¢ shows smoothness of the
ball movements for each strategy, with lighter shades denoting higher smoothness.
The point shows that a strategy with high amplitude reaches maximum smoothness
or minimum jerk. Importantly, the three maxima lie in different locations of the
execution space. Therefore, by looking at which amplitude and relative phase
subjects choose, we can infer which of the three costs are most important for
subjects’ movement control.

Following these simulations, equivalent measures for the execution variables

A,f, 0y, and 0o had be derived from experimental data. However, the experimental
trajectories were not fully determined by the initial values of ball states as variations
could be due to online corrective changes. Therefore, to estimate the execution
variables from the experimental trajectories, the initial values were extracted at each
cycle k (see Fig. 4). Peak excursions of the cup trajectory served as strobe points to

estimate A, f, 0, 90 and calculate trial averages A, f, 0o, 90 that served as correlates
for the variables in the simulations. To exclude transients only the time window
after 25 s was considered for analysis. To evaluate Hypothesis 1, that subjects seek
predictable object interactions, MI, and the alternative costs mean squared force
MSF, and mean squared jerk MSJ were calculated for each measured strategy

Ai, fe, O, 0,. Calculation of MI followed the same procedure as in the simulated MI,
except that probability density functions were estimated experimentally (for more
details see (Nasseroleslami et al. 2014). To calculate MSF, the continuous force
profile of each trial was squared and averaged, analogous to the simulated data. MSJ
was calculated according to the standard equations (Hogan and Sternad 2009).

The main experimental results are summarized in Fig. 5; the mutual information
plot is overlaid with contours of selected simulated force values (green). The figure
shows how subjects gravitated towards areas with higher MI, i.e. strategies with
more predictable interactions. In the left panel, each point represents the average
strategy for each 45 s trials for all subjects; darker red indicates early practice and
lighter red indicates late practice. The right panel shows the same data separated by
subject: the red arrows mark how each subject’s average strategy changed from
early practice (mean of first 5 trials) to late practice (mean of last 5 trials). Both
figures clearly show that all subjects increased their movement amplitude, associ-
ated with an increase in overall exerted force. The majority of subjects switched
from low- to high-predictability regions in the result space. None of the subjects
moved toward the minimum force strategy, nor towards a strategy with maximum
smoothness. Analysis of MSF and MSJ over trials shows that indeed exerted force
increased and smoothness decreased with practice, counter to findings in free
unconstrained movements. Overall, the results rejected the two alternative criteria
and were consistent with Hypothesis 1.
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Fig. 4 Exemplary profiles from inverse dynamics simulations and corresponding experimental
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Robust Interactions

The reviewed results suggest that when there is a choice, humans select a strategy
that increases the predictability of the human-object interaction. More predictable
human-object interactions may lessen the control burden; however, errors in control
undoubtedly exist, especially when only rough approximations of internal models
of object dynamics are available. Thus, keeping interactions predictable may not be
enough—a good strategy should also be robust to control errors. The cup-and-ball
task lends itself to experimental investigation of robustness, as there is a
well-defined threshold for failure, i.e. the ball escapes the cup—coffee is spilled.
Note that in the previous experiment, the ball could not escape, but swung around
following the circular path of the pendulum in situations of varying difficulty. By
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introducing a “rim” and also using a shallower cup, we could probe the use of
fragile and robust strategies.

We hypothesized that as a subject learns to manipulate the object, s/he should
find strategies that are more robust to failure. In a risky strategy, the ball gets close
to the rim of the cup and any small error may lead to loss of the ball. Therefore, a
safety margin is critical and might present a sensitive measure distinguishing
“fragile” from robust control. We hypothesized that this safety margin should
increase with practice (Hypothesis 2). Further, we expected that the size of the
safety margin depends on the performance variability. Individuals have different
degrees of variability and those with more variable movements should seek larger
safety margins (Hypothesis 2a). Further, if variability decreases with practice, then
the safety margin should change accordingly (Hypothesis 2b). We will now review
two studies that addressed these questions in young and also older healthy adults.
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Quantifying Robustness

To test these hypotheses, the safety margin needed to be defined. Safety margins
have been most frequently characterized in gait and posture and are typically
quantified by the degree of spatial and/or temporal difference between the body
center of mass/center of pressure and the base of support boundary (Hof et al. 2005;
Hasson et al. 2008). While useful, such measures can be difficult to generalize,
because they are specific to upright stance and can depend on the physical attributes
of the individual. Therefore, we developed a more general formulation, defined in
terms of energy, i.e. an energy margin.

Most objects that we may interact with are initially at rest, and when we pick
them up or handle them, we impart energy to them. For example, we push on a
shopping cart to start moving it or pick up a cup of coffee to drink. If too much
energy is imparted to such objects, an undesirable outcome may occur, such as
overturning the shopping cart or spilling the coffee. We define the energy margin
EM by the difference between the current energy to the energy level that causes
failure [see (Hasson et al. 2012a) for more details].

Specifically for the cup-and-ball system, EM quantifies how close the total
energy of the ball TEgay 1 is to the energy level that would cause the ball to exceed
the rim, i.e. the escape energy Egsc

EM = (EMgsc — TEgaLL)/Egsc (3)

EM 1is normalized to Eggc so that the maximum value is EM = 1 (maximum
safety). Small values indicate a “dangerous” condition; if EM remains below zero
the ball will escape from the cup unless a corrective action is taken. TEg4y 1 is given
by

TEgaLL = KEgarL + PEgavLL + PSEgarL
1 N2 . ,
= [Em (€9> } + [mgl(1 — cos 0)] + | —m‘x{sin 0 + m|’x}4 (4)

where KEgp 1 is the Kinetic energy of the ball, PEg ;1 is the potential energy of
the ball, and PSEgarr is a pseudo-energy because the ball is in an accelerated
reference frame relative to the cup. Eggc is defined as

Egsc = mgl(1 — cosOesc) — m’\‘xlg sinOgsc +m’7x‘€ (5)

In these equations, there are only three time-varying quantities, the ball angle 0,

the ball angular velocity 0, and the cup acceleration ‘x. These variables are mea-
sured and defined as the execution variables, which jointly determine the result
variable EM. Essentially, EM takes the instantaneous state of the cup and ball,
which includes inputs from the human hand, and extrapolates to determine whether
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the ball will escape, given the current value for 'x. At the very next instant in time, a

new determination is made based on updated execution values of 0, 9, and \‘x, and
so on for future time points. This analysis approach follows the same logic as for
the rhythmic task described above: identify the execution variables that fully
determinate the result variable. However, instead of mapping to a predictability
measure, MI (alternative measures or MSF and MSJ), the execution variables are
mapped into the energy margin EM. This same analysis strategy was previously
applied to other tasks such as throwing and bouncing a ball (Dijkstra et al. 2004;
Cohen and Sternad 2009; Sternad et al. 2014).

For any movement of the cup and ball, the energy margin fluctuates over the
time of the movement, as shown in Fig. 6a for an exemplar point-to-point trans-
lation of the cup and ball. The normalization of EM to Egsc affords an assessment
of the risk at any instant during an ongoing movement. When EM > 0 and the
margin is large, any unexpected disturbance can easily be dealt with or “absorbed”.
However, when EM < 0, the ball will escape in a finite “time-to-escape” (red dotted
lines in Fig. 6a), unless action is taken to increase the EM before the ball reaches
the rim. The exemplary profile shows fluctuations that are concurrent, but not
coincident with the ball excursions, as the applied force is also important. The same
trial can also be plotted as a trajectory in 3D space spanned by the three execution

variables 0, 9, and ‘x. (Figure 6b). The result variable is EM. The critical energy
Egsc defines a closed two-dimensional manifold two oblique cones joined together;
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Fig. 6 Exemplary profile of energy margin of one trial during early practice. a The energy margin
EM as a function of time. With the initial high EM, the ball is at rest and is unlikely to escape from
the cup, even when exposed to a disturbance. However, when the EM drops below zero the ball is
in a state where it will escape from the cup in a finite time (shown as the red dotted
“Time-to-Escape” lines). b For the same trial, the three variables that determine EM, ball angle and
angular velocity and cup acceleration, are shown in a three dimensional execution space. The trial
starts in the center (yellow triangle) and moves through the space as the trial progresses until the
cup is stopped at the spatial target (yellow square). The blue mesh represents the escape energy
threshold, EM = 0; whenever the trajectory breaches the manifold there is danger of ball-escape
unless a corrective action is taken. Figure modified from Hasson and Sternad (2014) with
permission under Creative Commons Attribution (CC BY) license
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see blue mesh. If the trajectory stays within this manifold, EM > 0, the
time-to-escape is infinite, and the ball is never in danger of escaping. If the manifold
is breached, EM < 0 and the ball may escape. If the subject applies a corrective

action to change ‘x in an appropriate way, then failure may be prevented. However,
the available time to make such a correction is finite. If the correction takes too
long, the ball will be lost. Note that the time-to-escape is computed at each instant

in time, assuming constant \‘x, but is then updated at the next instant in time when a
new set of execution variables (0, 0, and \‘x) is available.

Experimental Insights

A prior study sought to test the hypothesis that humans seek robust movement
strategies with appropriate safety margins (Hasson et al. 2012a). Subjects were
asked to make a discrete point-to-point translation of the cup, and to complete the
movement in a target time of 2 s without losing the ball from the cup. This com-
pletion time was comfortable and afforded selection among several strategies. For
comparison, a separate group of subjects performed a minimum-time movement,
translating the cup as fast as possible over the same distance. Both groups improved
their performance, i.e. the timing error and movement time decreased for the
target-time and minimum-time groups, respectively. As hypothesized, subjects in
the target-time condition increased their energy margin over practice (Fig. 7a). In
contrast, the energy margin decreased in the minimum-time task (Fig. 7b).
Accordingly, the minimum-time group lost the ball about 10 times as often as the
target-time group at the end of practice. These changes in the energy margin typ-
ically occurred throughout the entire movement profile, as highlighted by the
shading in Fig. 7a, b, although some portions of the movement tended to show
larger changes than others. These findings suggest that when urged to move as fast
as possible, subjects “live dangerously” and use small energy margins. However,
when multiple movement options are available humans prefer those that are more
robust to errors in control. This result supported Hypothesis 2a.

For a different view on how the energy margin changed with practice, a number
of trials from one representative subject are shown in execution space in Fig. 7c.
The blue mesh again represents the Eggc manifold; two perspectives on the same
data are shown for clarity. Early in practice, the movement trajectories are variable
and frequently break through the Egsc manifold by a significant amount, often
leading to loss of the ball. This happened mostly near the end of the movement
when subjects tried to stop the cup (seen as high cup deceleration). However, after
practicing the task, a clear structure becomes visible and the trajectories conform to
the Egsc manifold. This “contraction” of the trajectories raises the energy margin,
increasing robustness. As long as the trajectory is within the Exgc manifold there is
no chance of the ball escaping from the cup. This could be advantageous, as minor
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Sternad (2014) with permission under Creative Commons Attribution (CC BY) license

errors in control would not cause failure, which could free up cognitive resources
for higher—level movement planning operations.

Motivated by the robustness hypothesis, we also predicted that the size of the
safety margin should depend on subjects’ motor variability (Hypothesis 2a). This
follows previous work suggesting that variability plays a central role in movement
control such that the motor system optimizes movements to minimize the effects of
variability on task goals (Harris and Wolpert 1998; Trommershéuser et al. 2005;
Gepshtein et al. 2007; Cohen and Sternad 2009; Hudson et al. 2010; Sternad et al.
2011; Chu et al. 2013). Specifically, individuals with greater trial-to-trial variability
should choose a larger energy margin, and vice versa. To test this hypothesis, the
degree of correlation between the energy margin and trial-to-trial variability was
assessed for both the target-time and minimum-time tasks. Consistent with
Hypothesis 2a, results showed a positive correlation, i.e. subjects with high vari-
ability at the end of practice also had large safety margins at the end of practice
(Fig. 8a). There was no correlation for the target-time task. This could be ascribed
to the individual variations in strategies in the target-time group, while subjects in
the minimum-time group displayed more similar strategies. When examining
potential correlations across practice within each individual, there was a significant
correlation for the target-time group. Consistent with Hypothesis 2b, subjects with
large decreases in variability also changed their strategies to smaller energy mar-
gins, and vice versa (Fig. 8b). Those subjects who developed a consistent move-
ment pattern may have been more confident in their ability, and therefore did not
need large energy margins. Conversely, subjects with greater trial-to-trial variability
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chose a larger energy margin to accommodate the greater uncertainty. A connection
between variability and safety margins was subsequently demonstrated in other
recent studies (Chu et al. 2013, 2016; Hadjiosif and Smith 2015).

Robust control of behavior seems especially essential for individuals with
diminished control abilities and who are fragile and prone to injury. One such
population is frail older adults who may face catastrophic consequences in the event
of an error in movement control, such as a fall. Paradoxically, even though older
adults should utilize larger safety margins, in many cases the opposite has been
shown. For example, when walking over obstacles or navigating stairs, older adults
have smaller foot-obstacle clearances (Begg and Sparrow 2000; McFadyen and
Prince 2002; Hamel et al. 2005). During quiet standing their postural sway mea-
sures show reduced spatiotemporal margins of stability (Slobounov et al. 1998; Van
Wegen et al. 2002). We posited that such “high risk” strategies arise because older
adults have more difficulty controlling complex whole body movements. Older
adults may strive for high safety margins, but may be unsuccessful due to senso-
rimotor limitations. To explore this conjecture, we invited older adults to practice
the cup and ball task. We tested the hypothesis that older adults have lower energy
margins compared to younger adults (Hypothesis 3a), but as they learn to control
the cup-and-ball dynamics, we expected their energy margins to increase signifi-
cantly (Hypothesis 3b). Support for the latter hypothesis would show that they are
indeed striving for larger energy margins as they gain better control of the object
dynamics. We therefore asked them to perform the same discrete transport of the
cup and ball, emphasizing that they should not lose the ball.

The results showed that with practice, both young and older adults improved
their skill in the target-time task (decreased their timing error). Not surprisingly, the
younger adults performed better and dropped the ball less often. When comparing
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the kinematic profiles, i.e. the position and velocity of the cup and ball, only minor
differences between the two age groups were discernable (Fig. 9). It was only the
energy margins that revealed the differences between the two groups: early in
practice, the older adults performed with a significantly lower energy margin
(Fig. 10a), supporting Hypothesis 3a. Nonetheless, the older adults were able to
increase their energy margin with practice, although not to the level of the younger
adults (Fig. 10b). This implies that as older adults learned to interact with the
cup-and-ball dynamics, they were able to increase the robustness of their movement
strategies and, consequently, lost the ball less frequently (Fig. 10c), supporting
Hypothesis 3b. However, while the energy margins continued to increase in the
younger adults, it plateaued in the older adults. This suggests that sensorimotor
limitations in older adults limit their ability to keep the cup and ball in a regimen
with high safety margins.

A Task-Based Approach for Understanding Human-Object
Interactions

How do humans successfully manipulate tools in daily life, an ability that has a long
evolutionary history? Manipulation of complex dynamic objects presents daunting
challenges, although more for the scientist than the human actor. Extrapolating our
current understanding of human control of free movements to those involving
object manipulation may not be an incremental process. For example, feedback
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control based on internal models of the object dynamics appears problematic given
the long delays and high levels of noise in the human neuromotor system. Void of
knowing the control architecture, we adopted a task-based approach. We analyzed
the task and derived the solution space with no assumptions about the human actor
and control. Starting with a physical model of the object dynamics and the task, we
first identified execution and result variables. Mapping execution to selected result
variables rendered a space of solutions. Based on this understanding of the physics,
we could formulate quantitative hypotheses about potential strategies and objective
functions that humans might use. Implementing the task in an interactive virtual
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environment we then measured human performance and directly evaluated task
performance in the result space. This task-based approach has also been success-
fully applied in other tasks (Sternad et al. 2014).

Take Home Message

Unlike the body’s own limbs, interactions with objects in the external world can be
quite unpredictable. This is particularly true for objects with complex dynamics that
cannot be directly controlled, such as a cup of coffee or a jostling baby carriage.
Using the cup of coffee as a model task, we reviewed studies showing that with
practice humans learn to control such objects by making the interaction both pre-
dictable and robust. These criteria are important for all individuals, however they
may be of special importance to individuals with disabilities, where unpredictable
and fragile interactions with the world incur marked effects on the quality of life.
For these populations, it would be beneficial to develop interventions that promote
predictability and robustness and thereby complement traditional movement criteria
from free unconstrained movements such as movement smoothness and economy.
The current ecological task may be a first step in this direction.
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Part 11
Fifty Years of the Equilibrium-Point
Hypothesis




Fifty Years of Physics of Living Systems

Mark L. Latash

Abstract The equilibrium-point hypothesis and its more recent version, the ref-
erent configuration hypothesis, represent the physical approach to the neural control
of action. This hypothesis can be naturally combined with the idea of hierarchical
control of movements and of synergic organization of the abundant systems
involved in all actions. Any action starts with defining trajectories of a few referent
coordinates for a handful of salient task-specific variables. Further, referent coor-
dinates at hierarchically lower levels emerge down to thresholds of the tonic stretch
reflex for the participating muscles. Stability of performance with respect to salient
variables is reflected in the structure of inter-trial variance and phenomena of motor
equivalence. Three lines of recent research within this framework are reviewed.
First, synergic adjustments of the referent coordinate and apparent stiffness have
been demonstrated during finger force production supporting the main idea of
control with referent coordinates. Second, the notion of unintentional voluntary
movements has been introduced reflecting unintentional drifts in referent coordi-
nates. Two types of unintentional movements have been observed with different
characteristic times. Third, this framework has been applied to studies of impaired
movements in neurological patients. Overall, the physical approach searching for
laws of nature underlying biological movement has been highly stimulating and
productive.
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Recent History of Physics of Living Systems

The idea that biological systems should be studied with the same scientific method
as all other material objects in the Universe is rather old. The great physicist, Erwin
Schrodinger wrote over 70 years ago a seminal book “What is life? The physical
aspect of the living cell” (Schrodinger 1948). About 15 years later, a rather unique
Department named Physics of Living Systems was created in the Moscow Institute
of Physics and Technology (MIPT, known also as Fiztekh). This was a very small
program with fewer than 10 students graduating each year. It did, however, produce
a visible group of researchers in the field of motor control including Sergei
Adamovich, Alexander Frolov, Yuri Ivanenko, Yuri Levik, Konstantin Popov, and
a few others including the author of this Chapter, and Anatol Feldman—the creator
of the equilibrium-point (EP) hypothesis.

From its inception, the physical approach to biological systems was mostly
limited to problems at the molecular and cellular levels. Applications of this
approach to whole organisms, up to humans, were all but nonexistent, with the field
of movement studies dominated by descriptions of behavior and a few formal
models that had no explicit links to laws of nature. One notable exception was
biomechanics, with examples of successful application of the apparatus of classical
mechanics to animal movements. However, even those examples applied existing,
well-known laws of physics (mechanics) to biological objects without trying to
discover new laws that would be specific to biological motion (cf. Gelfand 1991;
Gelfand and Latash 1998). It has been obvious to any external observer that motion
of biological objects is special. For example, knowing the mechanical parameters,
initial conditions, and external forces is sufficient to predict motion of an inanimate
object. Biological objects, however, are much less predictable; in particular, they
frequently move uphill, fly against the wind, and swim against the current.

At the time of its creation, the name of the mentioned Fiztekh Department was
largely a promise that at some time in future physics of living systems would
become reality. In the subjective opinion of the author, it became reality in 1965
with the publication of the first in the series of three papers (Asatryan and Feldman
1965; Feldman 1966a, b) that introduced the basics of the EP-hypothesis. The
approach accepted in those studies amounted to searching for parameters (invari-
ants) of unknown laws that linked physical variables such as muscle length and
force. Based on the accumulated experimental foundation, Feldman suggested that
muscle force and length were linked by the mechanism of the tonic stretch reflex
with only one parameter that could be modified by the central nervous system,
namely threshold (1) of the tonic stretch reflex.

Currently, two approaches compete in the field of motor control, physical (based
on laws of natural science) and computational (based on engineering and control
theory). The former approach tries to discover laws of nature and their salient
parameters that dictate the production of natural movements. The latter approach
assumes that the brain is a computational device that solves the complex problems
of interactions among the numerous elements within the body and between the
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body and the environment (e.g., in the form of internal models, Wolpert et al. 1998;
Kawato 1999; Shadmehr and Wise 2005). The postulate of neural computation is
rejected by the physical approach as incompatible with natural science. On the other
hand, the importance of the computational approach for such fields as robotics may
be viewed as well established.

Living Systems and Parameters of Relevant Physical Laws

Within the physical approach, one may define a living system as a system able to:
(1) unite basic physical laws, those common across animate and inanimate object,
into chains and clusters leading to new stable and pervasive relations among
physical variables—new physical laws—involving new parameters; and (2) modify
these parameters in a purposeful way. In other words, inanimate systems are slaves
of the basic physical laws, while living systems create new physical laws and then
modify parameters of those new laws to achieve their goals. Within this definition,
the EP-hypothesis was revolutionary in its formulation of a new law of physics
specific for a living muscle with its reflex connections and identification of a salient
parameter for that law, A.

It took 50 years for the EP-hypothesis to become recognized as one of the (or
arguably the only) hypothesis in the field of motor control that makes it a subfield of
physics of living systems. Over this time, it had to deal with numerous criticisms. It
was at some point fashionable to criticize or even disprove the EP-hypothesis
(Gottlieb 1998; Popescu and Rymer 2000; Hinder and Milner 2003; for review see
Feldman and Latash 2005; Feldman 2015). All these criticisms were based on
misinterpretations of some of the basic postulates of the EP-hypothesis and/or
accepting its simplified (and hence incorrect) versions, making predictions, and then
showing them to be false. The fashion to disprove the EP-hypothesis has fortunately
passed. Now trying to prove or disprove this hypothesis may be safely viewed as
waste of time. The true task is developing the hypothesis and there are plenty of
actively explored directions of such developments including generalization of the
EP-hypothesis to natural multi-muscle movements, linking it to perception,
applying it to disordered movements, and, possibly most importantly, linking it to
neurophysiological mechanisms.

Generalization of the EP-hypothesis to the control of natural multi-muscle
movements has led to the emergence and development of the idea of control with
referent coordinates (RC) sometimes addressed as the RC-hypothesis (reviewed in
Feldman 2015). This is a quickly developing field, and the following brief and
simplified description may be viewed as a snapshot of the current view on the
control of natural movements.

Any goal-directed action starts with the formulation of a goal, which may be
viewed as a relatively low-dimensional set of salient coordinates (Task in Fig. 1).
For example, a pointing movement to a target involving numerous muscles may be
associated _with_setting_only_three parameters (RCs) for the pointing effector
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(e.g., the tip of the index finger) corresponding to the three coordinates of the target
in space. Implementation of the action requires setting RCs for individual joints and
muscles leading to a series of few-to-many transformations (the upper level and
lower level transformations only are shown in Fig. 1). Such transformations have
been commonly addressed as redundant (Prablanc et al. 2003; Karniel 2011), while
recently, a different term has been suggested—abundant (Latash 2012)—reflecting
a particular attitude to the problem of motor redundancy (Bernstein 1967).
According to the principle of motor abundance, apparently redundant transforma-
tions are not the sources of computational problems for the CNS (solved, for
example, with optimization approaches, Prilutsky and Zatsiorsky 2002) but useful,
rich designs that allow ensuring stability of salient performance variables in the
presence of unpredictable changes in both intrinsic body states and external forces,
and necessity to perform secondary tasks using the same sets of elements (reviewed
in Latash et al. 2007; Latash 2008).

This chapter addresses the recent progress in some of the areas within this
general scheme of control. First, I will review the links of the general scheme of
control with RCs to such notions as hierarchical control, theory of synergies, and
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Fig. 1 A multi-level scheme for the production of a natural movement with several few-to-many
mapping organized in a synergic way. Action starts with defining a low-dimensional set of referent
coordinates for task-specific salient variables, RCrask. It leads to sets of As for the involved
muscles compatible with the RCrask. At each step, the feedback may be organized similarly to the
central back-coupling scheme in Latash et al. (2005)
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uncontrolled manifold (UCM) hypothesis. Then, a few recent results are reviewed
related to such issues as synergies within spaces of hypothetical control variables
(such as r- and c-commands within the EP-hypothesis, Feldman 1980, 1986), the
nature of unintentional movements and drifts in force observed when a person stops
receiving visual information on an ongoing action (e.g., Slifkin et al. 2000;
Vaillancourt and Russell 2002; Shapkova et al. 2008; Ambike et al. 2015a), and
attempts at translating the recent progress into clinical studies (reviewed in Latash
et al. 2010; Latash and Huang 2015).

Hierarchical Control of Actions by Abundant Systems

The hierarchical scheme in Fig. 1 is readily compatible with the idea of synergies as
neural organizations that lead to stabilization of salient performance variables by
covaried adjustment within an abundant set of elemental variables, i.e., the outputs
of elements (reviewed in Latash et al. 2002, 2007). This is not the only meaning of
the word synergy in movement science. At least two more meanings are used
broadly in the literature. Among clinicians, synergy frequently has a negative
connotation; it implies stereotypical patterns of muscle activations (forces and joint
rotations) interfering with purposeful movements that are commonly seen in
patients after stroke (DeWald et al. 1995). In motor control literature, synergy
frequently means something like “a set of variables showing parallel changes”
(d’Avella et al. 2003; Ivanenko et al. 2004; Ting and Macpherson 2005). Uniting
elemental variables into such synergies has been viewed as a means of alleviating
the problem of motor redundancy by decreasing the number of variables manipu-
lated by the CNS.

One of the crucial features of natural movements, which allow them to be
efficient in the changing environment, is their stability. This term has been used in
the motor control literature in different meanings. Here, under stability, I imply
ability of a time-varying (dynamic) system to return to a state or trajectory fol-
lowing a small, transient perturbation. Gregor Schoner (1995) introduced the
important notion of rask-specific stability, which is a characteristic of biological
systems but not of inanimate objects. This notion implies that a multi-element
system is able to reorganize interactions among elements leading to stability of
some performance variables but not others, depending on the task and intention of
the actor. This notion is applicable to abundant systems only.

The introduced definition of stability suggests that there is only one method to
assess stability directly, that is, to apply a small, transient perturbation and quantify
behavior of the system. While this method seems straightforward, its application to
the human motor system is far from trivial because of the poorly controlled phasic
reflexes and reflex-like reactions to perturbations (Hammond 1955; Tatton et al.
1978; reviewed in Shemmell et al. 2010). Two indirect methods have been
developed. The first is based on the idea that, over a set of repetitive trials, a
dynamic system deviates from average trajectory more in directions of low stability
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and less in deviations of high stability. As a result, computing variance across trials
at comparable phases is expected to show lower values in relatively stable direc-
tions. If a particular performance variable is selectively stabilized, variance within a
subspace that leads to no change in that variable (its uncontrolled manifold, UCM,
Scholz and Schéner 1999) is expected to be relatively large as compared to variance
in the orthogonal to the UCM directions (ORT). The inequality Vycm > Vorr has
been used as a signature of a synergy stabilizing that performance variable,
sometimes reduced to a single metric, an index of synergy AV = (Vyem — Vort)/
VroraL, Where all variance indices are computed per dimension in the corre-
sponding spaces.

Another indirect method of assessing stability in different directions of a
multi-element system is based on the notion of quick corrective actions as brief
perturbations into the system. If a person is asked to perform a quick corrective
action, much of the motion is expected to be in directions of lower stability. For
example, imagine that you hold a small metal spring from a typical pen between the
thumb and the index finger. If you now try to squeeze the spring quickly, very
likely it will buckle and jump away, i.e., move not in the desired direction but in an
orthogonal direction (cf. Venkadesan et al. 2007; Lawrence et al. 2014). This is due
to the fact that the spring is relatively stable along its main axis and is relatively
unstable in orthogonal directions. If the CNS stabilizes a performance variable
selectively, an attempt to change this variable quickly is expected to lead to large
deviations in directions of low stability, i.e., within the UCM for that variable. Such
deviations have been addressed as motor equivalent (ME). A number of studies
have documented very large amounts of ME action during quick corrections of
actions despite the fact that ME action by definition is inefficient in correcting a
deviation of the performance variable (Mattos et al. 2011, 2013, 2015). Note that
both AV and ME indices are proxies of stability.

Mechanisms of selective stability (mechanisms of synergies) are basically
unknown. A number of schemes have been suggested including both computational
(such as optimal feedback control, Todorov and Jordan 2002) and neurophysio-
logical (such as central back-coupling, Latash et al. 2005) schemes. A scheme
uniting the ideas of back-coupling and of control with RCs has been suggested
(Martin et al. 2009). Indeed, irrespective of specific realization, the idea of synergic
control is naturally compatible with hierarchical control with RCs: If an action is
initiated with specifying a low-dimensional task-specific set of RCs at a hierar-
chically high level (with some, relatively low, inter-trial variance), trajectories of
corresponding performance variables are expected to be stabilized against intrinsic
noise (e.g., associated with deviations of RCs at lower levels, see Fig. 1) and
changes in external forces. The latter are due to the length- and velocity-dependence
of muscle force (which is universal, not task-specific) and may get contributions
from other, learned, feedback mechanisms.

While action stability is vital, too much stability may be detrimental, for
example, if a person tries to produce a very quick change in a performance variable
on the background of a steady-state action. Recent studies have shown that humans
possess..a_feed-forward mechanism_that allows changing stability of salient
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performance variables (as reflected in indices of corresponding multi-element
synergies) in preparation to a quick action or reaction, anticipatory synergy
adjustments (ASAs, Olafsdottir et al. 2005; Shim et al. 2005). ASAs are seen as a
drop in the index of synergy stabilizing a performance variable 200-300 ms prior to
a planned quick change in that variable. This purposeful destabilization of a vari-
able facilitates its quick change in any direction, even in situations when the
direction of change in not known in advance (Zhou et al. 2013).

Synergies in the Space of Referent Coordinates

Since the original publication (Scholz and Schéner 1999), the UCM hypothesis and
the associated method of analysis of the structure of variance have been used
actively to explore synergies in spaces of elemental variables such as joint rotations,
digit forces, and muscle groups (M-modes). The formulation of the problems in
those studies has always been deficient: They searched for synergies in spaces of
elemental performance variables, not control variables. Merging the ideas of control
with RCs with the UCM-based analysis was elusive until recently. This was partly
due to the fact that measuring RCs (e.g., As for individual muscles) is by itself a
challenging task. Attempts at reconstructing time profiles of RCs required multiple
trials and were built on simplified mechanical models of the moving effectors
(Latash and Gottlieb 1991; Latash 1992; Ambike et al. 2015b), which were criti-
cized as inadequate (Gribble et al. 1998). Recently, however, a method has been
developed that promises to overcome this limitation (Ambike et al. 2016b).

Consider the control of a joint spanned by two muscles acting in opposite
directions, an agonist—antagonist pair (Fig. 2a). The neural control of each muscle
may be described with a single parameter, A, threshold of the tonic stretch reflex.
For a given A, there is a dependence of active muscle torque on joint angle (shown
as curved lines in Fig. 2). Note that A defines neither muscle force, nor its length,
nor its activation level: All three change along the muscle characteristic. Joint
behavior will be defined by its torque-angle characteristic, which is the algebraic
sum of the two muscle characteristics. Actual joint torque and position in equi-
librium will be defined by interactions of the joint with the external load. The pair
of control variables {ArG, AanT} may be substituted with an equivalent pair {r; c}
(Feldman 1980). The r-command (reciprocal command) corresponds to unidirec-
tional shifts in the two As; such shifts favor activation of one muscle within the pair
compared to the other muscle. The c-command (coactivation command) leads to
counter-directional changes in the As leading to parallel changes, an increase or a
decrease, in the activation of both muscles.

The {r; c} pair of control variables can be generalized for any effector. For
example, the neural control of action by a fingertip along one dimension can be
described with two variables, R and C, which are analogous to the r- and c-
commands but represent the action of all the muscles that contribute to the fingertip
action_(Fig. 2b). One_of the commands, R, defines a referent coordinate for the
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Fig. 2 a The torque-angle characteristics for two muscles, agonist and antagonist, acting at a
joint. Their control can be described with two As, Axg and AsnT Or With two equivalent commands,
r-command and c-command; b The control of a fingertip can be described with two equivalent
commands, RCgr (referent coordinate) and k¢ (apparent stiffness)

fingertip, i.e., a spatial coordinate, at which it produces zero net force on the
environment. If the fingertip is kept away from its RC (for example, by a stop), it
would produce a net force on the stop, and the force magnitude (Fgt), in a linear
approximation, would depend on the difference between the fingertip actual coor-
dinate (ACpr) and RCgr with a scaling coefficient k¢, apparent stiffness of the
fingertip: Fpr = kc(RCgr — ACgr). The coefficient k¢ reflects the other basic
command, C-command.

Figure 3a illustrates the task of accurate force production. When a person is
asked to produce a particular force level by pressing on a stop with the fingertip, an
infinite number of {RCgr; kc} combinations can be used to produce the required
force (panel A in Fig. 3). So, the apparently nonredundant task of fingertip force
production is in fact redundant (abundant!) at the control level. There is a hyper-
bolic line corresponding to a required force level (Fig. 3b). This line is the UCM for
this task in the space of elemental control variables or, to be more exact, in the
space of mechanical variables that may be viewed as direct reflections of the
hypothetical neural variables.

Now one can formulate a question: Do humans use the abundance afforded by
the presence of two commands, R and C, during single-finger accurate force pro-
duction tasks? Are there {R; C} synergies stabilizing the fingertip force reflected in
the {RCpr; kc} synergies? This is not a trivial question. Indeed, deviations from the
prescribed force level depend only on deviations from the UCM in Fig. 3 and not
on deviations along the UCM. So, one can perform the task very accurately, i.e.,
with small deviations from the UCM with equal deviations along the UCM, larger
deviations, or smaller deviations. This is illustrated in the right panel of Fig. 3,
which shows three data distributions with about the same dispersion orthogonal to
the UCM (about the same accuracy of performance). They are associated with
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Fig. 3 a The solution space (UCM) for the task of accurate fingertip force production on the
{RCEr; kc} plane; b A close-up showing possible data distributions compatible with a particular
level of accuracy in the task. Note that deviations from the UCM are about the same for the three
data distributions, while deviations along the UCM may be smaller (crosses), about the same (open
circles), or larger (filled circles) that deviations from the UCM. Distributions similar to the one
illustrated with filled circles were observed in experiments

smaller (filled circles), about equal (crosses), and much larger (open circles) dis-
persion along the UCM.

So far, only one experimental study explored {RCgr; kc} synergies during
fingertip force production (Ambike et al. 2016b). In that study, the subjects pressed
on a force sensor and produced fingertip force to match a visual target. Then, the
“inverse piano” (Martin et al. 2011) device was used to lift the finger smoothly over
a small amplitude (1 cm at 2 cm/s), while the subject was instructed not to interfere
with possible fingertip force changes. Visual feedback was turned off to help the
subject not to correct the force changes that emerged naturally when the finger was
lifted. Finger force increased during the lift in proportion to the change in the
fingertip coordinate. Note that, according to the idea of control with RCs, in the
initial state, a combination of RCgr and k¢ led to the actual force generated by the
fingertip and measured by the force sensor. Assuming that the subject did not
change the neural commands, the finger lift led to a change in the difference
between the RCgr and ACgr and, as a result, to a proportional change in the force.
Using linear regression between the force and coordinate allows reconstructing
RCpgr and k¢ as the intercept and the slope of the regression line. Of course, the
method is based on several assumptions including the linear relation between the
fingertip force and coordinate (supported by the observed linear regressions with
R > 0.9) and the questionable extension of the regression line beyond the range of
observations.

Experiments have shown that subjects indeed use relatively broad ranges of both
RCpgr and k¢, and the two are nearly perfectly covarying to keep force deviations
from the desired value low (as in the distribution with filled circles in Fig. 3b). The
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covariation was demonstrated using a randomization method (cf. Miiller and
Sternad 2003) when values of the two variables were selected randomly from
different trials, hence no covariation existed in such surrogate data sets, and vari-
ance of total force from the surrogate data sets was computed. It was two orders of
magnitude larger than force variance in the original data set demonstrating that the
randomization removed very strong covariation between RC and k¢ directed at
keeping force variance low.

To our knowledge, this is the first demonstration of synergies in the space of
elemental variables that are close to the hypothetical neural variables within the
hypothesis on control with RCs. Of course, the method is crude and relies on
assumed linear behavior of the effector within a small range of perturbations.
However, this method is a promising first step towards developing analysis of
synergies within spaces of control variables.

Unintentional Movements as Drifts of Referent Coordinates

According to the EP-hypothesis, transient changes in external forces should not
lead to changes in the final steady state of a moving effector as long as the subject
does not introduce corrections and the muscle force-generating properties remain
unchanged (reviewed in Feldman 2015). This prediction has been addressed as
equifinality. Equifinality was confirmed in several studies with transient force
changes (Bizzi et al. 1976; Kelso and Holt 1980; Schmidt and McGown 1980;
Latash and Gottlieb 1990), while other studies reported violations of equifinality
during movements in unusual environments such as during arm movements per-
formed while sitting in a rotating centrifuge or moving in an artificial force field
with negative damping (Lackner and DiZio 1994; DiZio and Lackner 1995; Hinder
and Milner 2003). Within the framework of the EP-hypothesis, violations of
equifinality suggest that the subject was unable to follow the instruction “do not
intervene” and unintentionally shifted RCs for the moving effector (Feldman and
Latash 2005). In particular, Archambault et al. (2005) suggested that humans were
unable to tolerate perturbations leading to muscle stretch and adjusted commands
(A) to those muscles unintentionally. This interpretation has been developed
recently based on examples of violations of equifinality in more typical experi-
mental conditions, without destabilizing force fields.

In fact, unintentional drifts in motor performance have been known for some
time. Imagine a person who is asked to produce force against a stop (e.g., to press
with a finger on a force sensor) and match a target force level using visual feedback.
If the visual feedback is turned off and the subject is instructed to keep producing
the same force level, the actual force typically shows a slow decline with the time
constant of between 10 and 20 s (Vaillancourt and Russell 2002; Ambike et al.
2015a). The subject is unaware of the force drift, even if it leads to a substantial
force drop, >30 % from the original level. A similar drop in grip force was seen in
experiments_when_subjects._moved_a_handle up and down under anesthesia of
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cutaneous receptors in the hand (Augurelle et al. 2003) and when the handle
grasped by the subject expanded and contracted very slowly (Ambike et al. 2014).
The drop in force means that there is a drift in RC for the fingertip and/or a drift in
the apparent stiffness kc. This force drop also illustrates the limitations of the
somatosensory system in providing feedback on kinetic variables such as fingertip
force.

The instruction “continue doing what you have been doing” implies that the
subject should not change the intentional input into the hierarchically lower
structures involved in the task performance. Removing visual feedback is another
method to avoid corrective changes in this descending input. Spontaneous drift in
performance under such conditions is a reflection of natural behavior of the physical
system (including both neural and muscular components) that participates in the
performance. The aforementioned unintentional force drift suggests that this
physical system drifts toward a state with minimum of its potential energy (as all
physical systems do).

More examples of unintentional changes in RCs leading to violations of equi-
finality were observed in experiments with external transient perturbations applied
on the background of static tasks, such as holding a hand position against a force
vector (Zhou et al. 2014, 2015a, b) and producing a constant force by the four
fingers of a hand (Wilhelm et al. 2013; Reschechtko et al. 2014, 2015). These
examples form two groups. First, a transient change in the external force applied
during the positional task leads to relative equifinality in the final hand position and
orientation, but equifinality is violated at the level of joint configurations (Zhou
et al. 2014). In other words, if the external force increases and then decreases
smoothly, the hand comes to a new position, which is more or less the same as the
initial hand position. In contrast, the joint configuration shows large variance,
which is compatible with the unchanged hand position and orientation. In the
multi-finger tasks, lifting and lower a finger (a transient positional perturbation)
during the steady-state phase of the task leads to relatively low variance in the total
force while sharing of the force among the four fingers shows large variability.

Taken together, these studies show that application of external transient per-
turbations leads to relative equifinality at the task level but not at the level of
elemental variables. This is not a completely unexpected result given the existence
of synergies (in a sense Vycm > Vorr) stabilizing the task-specific variables, such
as hand position and orientation in the kinematic task and total finger force in the
kinetic task (cf. Wilhelm et al. 2013; Zhou et al. 2014). Such synergies reflect lower
stability of the involved elemental variables in directions leading to no change in
the task-specific performance variables, i.e., along the corresponding UCM.
Naturally, a perturbation is expected to lead to larger deviations of the elemental
variables along the directions of low stability; this is true for both segments of a
transient perturbation, its application, and removal. Hence, these results confirm
directly (i.e., with perturbations) one of the main postulates of the UCM-based
method, i.e., that the inequality Vycm > Vorr indeed reflects different stability of
the system along the UCM and ORT subspaces.
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Fig. 4 Schematic illustration of the main results in an experiment with transient perturbations
interrupted by a brief dwell time. In the initial state, the subject produces active force against an
external load (F) at a certain coordinate (X;). An increase in the load to F, leads the hand to a new
coordinate (X,) where the system is again at equilibrium. After a few seconds, the load returns to
F1, the hand moves toward the initial coordinate but stops short of X; (X3). Note the different
slopes of the trajectories during the application and removal of the force perturbation

Another example of violations of equifinality was observed at the task level. Such
violations take place if a transient perturbation is interrupted by a dwell time interval
between the perturbation application and removal (Zhou et al. 2014, 2015a, b). This
process is much faster than the slow force drift observed without perturbations, with
a time constant of about 1 s. Such effects were observed both in multi-joint posi-
tional tasks with the application of force perturbations and in multi-finger pressing
tasks under the application of positional perturbations with the help of “inverse
piano.” These processes show that a perturbation triggers a drift of the RC at the task
level toward the new actual coordinate of the effector. The drift is never complete
such that, when the perturbation is removed, the effector moves back to its initial
state but with an undershoot that may cover up to 50 % of the displacement (force
change) of the effector caused by the perturbation (Fig. 4).

Voluntary, Involuntary, and Unintentional Movements

Within the EP (RC) hypothesis, there are two types of movements, voluntary and
involuntary. The former are associated with shifts of the RC at the task level (A at
the single-muscle level); their mechanical effects and muscle activation changes
depend on both the RC shift and the external force field. For example, the same
shift of A can lead to a movement in isotonic condition, to force generation in
isometric conditions, and to both in intermediate loading conditions. Involuntary
movements are associated with changes in the external load without a change in
RC. Typical examples include joint motion in response to unloading as in the
classical experiments of Feldman (1966a).
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Fig. 5 Within the EP (RC) hypothesis, changes in RC lead to voluntary movements (and/or active
force production). If external forces (load) change while RC stays unchanged, movements are also
observed (involuntary movements). Recent studies have suggested the existence of unintentional
voluntary movements, i.e. those associated with a change in RC, which happens without subject’s
intention. There are two types of such movements, slow (with characteristic times of ~ 10-20 s)
and fast (with characteristic times of ~ 1 s)

The aforementioned examples of RC drifts that happen when the subject is
trying not to change the RC suggest that there is one more class of movements.
They may be called voluntary because they are associated with RC changes, but
they are unintentional (Fig. 5). There are two classes of such movements that differ
rather dramatically in the characteristic times, fast (t # 1 s) and slow (t ® 10—
20 s). If we assume that these drifts reflect natural behavior of the physical (in-
cluding physiological) system involved in the task, they suggest the existence of
two relaxation processes with such characteristic times.

This hypothesis maps well on the idea of two subspaces, UCM and ORT, with
different characteristic stability and, correspondingly, different characteristic times
of processes within those subspaces. Indeed, processes within the UCM are
expected to be slow (low stability) while processes within ORT are expected to be
fast (high stability). Note that even a seemingly nonredundant task (for example,
force production by a single finger) is abundant at the “hidden” levels such as, for
example, the level of the involved joints, muscles, motor units, etc. So, the notions
of UCM and ORT are applicable to such tasks. During steady states, drifts are
mostly limited to the UCM and, hence, are slow. In contrast, perturbations move the
system within the ORT space and trigger fast unintentional movements.

Both unintentional drifts, fast and slow, have been observed for task-related
performance variables, i.e., within the ORT space. The idea that the slow drift
originates within the UCM suggests that the two subspaces, UCM and ORT, are
coupled such that a drift in one leads to a drift in the other at a comparable rate. This
hypothesis has not been tested experimentally.

There are several observations that keep the offered description incomplete. For
example, force drift during low initial forces was observed in the opposite direction,
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i.e., toward higher forces (Ambike et al. 2015a). When a subject is asked to perform
not a steady-state task but a cyclical task, turning visual feedback off reveals both
drifts: A slow drift in the midpoint of the force cycle to lower values and a fast drift
of the amplitude of the cyclical force changes towards higher values (Ambike et al.
2016a). When a perturbation moves the system not away from its RC but towards
the RC, no visible drift is seen (Qiao et al. 2015). Taken together, these observa-
tions suggest that unintentional movement characteristics are defined by a number
of factors that may include, in particular, properties of the somatosensory system,
preferred (maybe optimal in some sense) magnitude of performance, and reactions
of the muscle to lengthening and shortening perturbations (cf. Archambault et al.
2005). This is an exciting field for future experimental and theoretical studies.

Translation into Clinics: Muscle Tone and Spasticity

The EP (RC) hypothesis offers a fruitful and consistent framework based on natural
science to analyze movement disorders in a variety of neurological patients. One of
the most challenging and important tasks of researchers is to define terms used by
clinicians in a way that allows incorporating them into a general scheme of the
neural control of movement. For example, such commonly used terms as increased
or decreased muscle tone, impaired joint coordination, impaired postural or
movement stability, and others should be defined explicitly and operationally; the
last word means that methods of objective quantitative assessment of the corre-
sponding phenomena have to be developed.

One of the commonly used notions in clinical movement studies is muscle tone.
A detailed discussion of this notion has been published recently (Latash and
Zatsiorsky 2016). Here I would only like to mention the definition proposed by
Bernstein and Kots (1963) who emphasized the importance of reflexes for muscle
tone and linked the notion of muscle tone to tuning the neuromotor apparatus to
tasks of active postural or movement control. In contrast, consider how muscle tone
is measured during clinical examinations (the person is asked to relax and the
effector is moved over its range of motion) or tools that are claimed to measure
muscle tone (applying deformation orthogonal to the surface of the body and
measuring the resistive force and deformation). None of these methods addresses
the Bernstein understanding of muscle tone as a contributor to active movement and
postural tasks, since the subject is always asked to relax and do nothing.

Consider Fig. 6, which illustrates the behavior of a muscle during its passive
stretch. If in the original state the muscle is relaxed at a particular length L, its
threshold of the tonic stretch reflex value (L) is undefined. We only know that
A > Ly. For Ay ® L, any motion stretching the muscle would trigger its activation
and relatively strong resistance. For A3, which is beyond the anatomical range of
muscle length, motion over the whole range would lead to only weak resistance due
to properties of passive tissues. For an intermediate A,, the resistance would be
weak until muscle length reaches A, and then will increase substantially. Should one
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Fig. 6 A scheme of the relation between muscle active force and length. If the muscle is relaxed,
its tonic stretch reflex threshold (L) is longer than its actual length (L,). Passive stretching the
muscle to L; may lead to its different resistance depending on the distance between A and L, F; for
A1, F; for Ay, and F = 0 for A3). Muscle tone may be associated with the distance between L and A.
Passive length-dependent resistance of the tissues is ignored

call the case with A; hypertonic, the case with A3 hypotonic, and the case with A,—
normal tone? This does not seem to make sense because all three subjects in this
experiment were healthy and simply interpreted the instruction “to relax™ differ-
ently. Does it make sense to associate the notion of muscle tone with the distance
from actual muscle length to A when the subject is instructed to relax? This question
is open to research and discussion among clinicians.

The framework of the EP-hypothesis has been effectively used in the analysis of
spasticity, a common motor disorder following spinal cord injury, stroke, multiple
sclerosis, and other neurological impairments. Traditionally, spasticity has been
associated with so-called positive signs (increased muscle tone and uncontrolled
contractions) and negative signs (weakness up to complete paralysis) (Landau
1974). A number of more recent studies have suggested, however, that the positive
and negative signs interact with each other. For example, effective suppression of
uncontrolled contractions, e.g., with intrathecal baclofen, is associated with
unmasking of better voluntary movements (Corcos et al. 1986; Latash et al. 1990;
Latash and Penn 1996).

These and other observations led to a scheme that considers spasticity as
impairment in the control of control of RCs within the whole natural range (Levin
and Feldman 1994; Musampa et al. 2007; Calota and Levin 2009). At the muscle
level, this means impaired control of shifts of As of affected muscles. A healthy
person is able to change A beyond the anatomical range of muscle length values,
{Lyvin; Lmax)- This allows producing high forces at short muscle length values
(A < Lyn) and relaxing the muscle when it is stretched to its maximal length
(A > Lyax) (Fig. 7). Patients with spasticity are assumed to have a limited range of
A changes, {L_; L,}. This limits the voluntary control of the muscle to the narrow
range of length values; at shorter muscle length (L < L-), the muscle is paralyzed,
while at longer muscle length (L > L,), the muscle shows involuntary contraction.
This scheme leads to multiple questions regarding, for example, changes in the
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Fig. 7 An illustration of a spastic muscle. The subject lost his/her ability to move the tonic stretch
reflex threshold (L) over its full range. If the range of A is limited by L_ and L, it is impossible to
activate voluntarily the muscle when its length is shorter than L_. It also becomes impossible to
relax the muscle when its length is longer than L,. The biomechanical range of muscle length
changes in shown with vertical dashed lines, Lyyn t0 Lyax

effects of stimulation of somatosensory receptors on A shifts in spasticity (leading,
for example, to the withdrawal reaction), interactions leading to cyclical changes in
unintentional muscle activity (such as in clonus), etc.

Translation into Clinics: Impaired Control of Stability

Another aspect of movement disorders that has recently been studied actively
within the physical approach is disorders of movement stability (reviewed in Latash
and Huang 2015). Note that stability of natural actions is crucial for their success
given the changing unpredictable environment and intrinsic states of the body. As a
result, loss of stability of motor patterns leads to major impairments in the motor
function. Well-known examples include ataxia in patients with cerebellar disorders
and loss of postural stability in Parkinson’s disease (reviewed in Fahn and Jankovic
2007).

The framework of the UCM hypothesis has been used to quantify task-specific
stability in a number of neurological disorders across a variety of motor tasks, from
multi-finger accurate pressing and manipulation (Park et al. 2012, 2013) to
multi-joint reaching (Reisman and Scholz 2003) and multi-muscle whole-body
actions (Falaki et al. 2016). Overall, these studies revealed strikingly different
changes in stability of motor patterns in patients with cortical and subcortical
disorders.

Patients with subcortical disorders including those with Parkinson’s disease
(Park et al. 2012; Jo et al. 2015), multi-system atrophy (Park et al. 2013), and
multiple sclerosis affecting subcortical loops (Jo et al. 2016a) showed significantly
decreased indices of motor synergies during steady-state phases and significantly
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reduced and delayed anticipatory synergy adjustments (ASAs) in preparation to
quick actions. These two aspects of impaired synergic control (impaired control of
stability, ICS) have been referred to as impaired stability and impaired agility,
respectively (Latash and Huang 2015).

ICS could be seen in patients with Parkinson’s disease at early stages. In par-
ticular, in patients at stage-I of Hoehn-Yahr (Hoehn and Yahr 1967), which is
characterized by clinical signs of PD limited to only one side of the body, changes
in the synergy index and ASAs during multi-finger tasks were seen in both hands
(Park et al. 2012, 2014). Patients at stage-II, defined as the stage with no clinical
signs of postural instability, show decreased indices of multi-muscle synergies and
decreased ASAs seen during whole-body postural tasks (Falaki et al. 2016). Taken
together, these observations suggest that ICS, as reflected by changes in synergic
control, can be seen in tasks and body parts that show no clinically detectable signs
of the disease. This is a potentially important set of results promising a sensitive
behavioral biomarker of Parkinson’s disease. It is also important that indices of
impaired synergic control are sensitive to dopamine-replacement treatment of
Parkinson’s disease (Park et al. 2014) and to deep brain stimulation (Hang Jin Jo
et al., unpublished).

In contrast to the pronounced ICS in patients with subcortical disorders, the very
first studies of multi-joint reaching in persons after cortical stroke led to an unex-
pected result (Reisman and Scholz 2003). The motor patterns during movements of
the contralesional (strongly impaired) arm were clearly different compared to those
of the ipsilesional (relatively unimpaired) arm. However, the structure of inter-trial
variance quantified in the joint configuration space with respect to the endpoint
trajectory was similar between the two arms. So, the impairment of motor patterns
was not accompanied by impaired stability of the movement. A later study con-
firmed these results for multi-finger accurate force production tasks (Jo et al.
2016b). Surprisingly, ASAs were changed (delayed and reduced) after cortical
stroke in both ipsilesional and contralesional hands (Fig. 8). So, stroke patients
show only one aspect of ICS, namely impaired agility, while stability of their
movement patterns by synergies does not seem to be affected.

Fig. 8 Illustration of the 3 ASA in Controls
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Let us try to interpret these observations within the EP (RC) hypothesis
framework. Recent studies using transcranial magnetic stimulation (TMS) during
single-joint motor tasks have suggested that the corticospinal tract signals are
encoding not forces, coordinates, or muscle activation levels, but changes in As for
the involved muscles (Raptis et al. 2010; Sangani et al. 2011). It is reasonable to
generalize these findings to natural movements and assume that corticospinal sig-
nals encode RC values for the task-specific variables. Multi-element synergies
stabilizing salient performance variables are associated with the assumed mapping
of the task-specific RCs on RCs at lower hierarchical levels, e.g., as in the central
back-coupling hypothesis (see Fig. 1; Latash et al. 2005). Feedback loops involved
in such mappings have adjustable gains leading to different indices of synergies
within the abundant spaces of elemental variables stabilizing the corresponding
salient performance variables. Within this scheme, there are two major groups of
neural variables specified at the hierarchically higher control level. Changes in one
of the two groups, NV1 in Fig. 9, lead to changes in salient performance variables,
while changes in the other group, NV2 in Fig. 9, lead to changes in stability of
those performance variables as ensured by synergies at the hierarchically lower
level.

TASK

NV1 \

2
RCLOW |

v

Elemental Variables]

A

Performance

Fig. 9 Two groups of neural variables are specified at the hierarchically higher control level, NV1
and NV2. A change in NV1 leads to changes in the referent coordinates at the task level (RCrask)
for salient performance variables, while a change in NV2 leads to changes in stability of those
variables (transformations from RCyask to RCs at lower hierarchical levels, RCy gw). Clinical
studies suggest that both NV1 and NV2 are generated with a crucial role played by cortical
structures. An impairment in NV1 leads to overall impaired performance including weakness and
low accuracy as seen in averaged across trials patterns. An impairment in NV2 leads to decreased
and delayed ASAs
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The contrasting results in different patient groups suggest that both NV1 and
NV2 are generated with a crucial role played by cortical structures. An impairment
in NV1 leads to overall impaired performance including weakness and low accu-
racy as seen in averaged across trials patterns. An impairment in NV2 leads to
decreased and delayed ASAs. In contrast, the circuitry involved in the few-to-many
transformations seems to depend crucially on subcortical loops. This interpretation,
while obviously simplistic, maps well on the idea of distributed processing modules
based on subcortical loops involving the cerebellum and the basal ganglia (Houk
2005).

Take Home Messages

The EP (RC) hypothesis is unique in its longevity and influence. Fifty years ago it
signified the first step toward turning motor control into a subfield of physics of
living systems. Over the recent years, the EP-hypothesis has been developing
rapidly. In particular, the main idea of control with referent coordinates merged
with the ideas of hierarchical control, synergic control, and naturally incorporated
the apparatus of the uncontrolled manifold hypothesis. This approach has been
productive not only in the field of the neural control of movement but also with
important implications for kinesthetic perception, clinical studies, and effects of
practice (reviewed in Feldman 2015). From the subjective optimistic view of the
author, we are moving toward turning motor control into a subfield of natural
science, physics of living systems.
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